已知三點O(0,0),A(-2,1),B(2,1),曲線C上任意一點M(x,y)滿足||=
(1)求曲線C的方程;
(2)點Q(x,y)(-2<x<2)是曲線C上動點,曲線C在點Q處的切線為l,點P的坐標(biāo)是(0,-1),l與PA,PB分別交于點D,E,求△QAB與△PDE的面積之比.
【答案】分析:(1)先求出、的坐標(biāo),由此求得||和的值,由題意可得 =4-2y,化簡可得所求.
(2)根據(jù)直線PA,PB的方程以及曲線C在點Q(x,y)(-2<x<2)處的切線方程,求出F點的坐標(biāo),D、E兩點的橫坐標(biāo),可得S△PDE和S△QAB的值,從而求得△QAB與△PDE的面積之比.
解答:解:(1)由=(-2-x,1-y),=(2-x,1-y)可得=(-2x,2-2y),
∴||=,=(-2-x,1-y)•(0,2)+2=4-2y.
由題意可得 =4-2y,化簡可得 x2 +2y-3=0.
(2)直線PA,PB的方程分別為 y=-x-1、y=x-1,曲線C在點Q(x,y)(-2<x<2)處的切線方程為y=x-
且與y軸的交點F(0,-).
求得xD=,由求得xE=
故xE-xD=2,故|FP|=1-
故S△PDE=|PF|•|xE-xD|=(1-)•2=,
而S△QAB=×4×(1-)=,
=2,即△QAB與△PDE的面積之比等于2.
點評:本題主要考查拋物線的標(biāo)準(zhǔn)方程的應(yīng)用,利用導(dǎo)數(shù)求曲線上某點的切線方程,求得F點的坐標(biāo),D、E兩點的橫坐標(biāo),
是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三點O(0,0),A(1,0),P(x,y)且設(shè)x≥1,y≠0.
(1)如果選取一點Q,使四邊形OAPQ成為一平行四邊形,則Q的坐標(biāo)是
 

(2)如果還要求AP的中垂線通過Q點,則x,y的關(guān)系是
 

(3)再進(jìn)一步要求四邊形OAPQ是菱形,則x=
 
時.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知三點O(0,0),A(-1,1),B(1,1),曲線C上任意-點M(x,y)滿足:|
MA
+
MB
|=4-
1
2
OM
•(
OA
+
OB
)

(l)求曲線C的方程;
(2)設(shè)點P是曲線C上的任意一點,過原點的直線L與曲線相交于M,N兩點,若直線PM,PN的斜率都存在,并記為kPM,kPN.試探究kPM•kPN的值是否與點P及直線L有關(guān),并證明你的結(jié)論;
(3)設(shè)曲線C與y軸交于D、E兩點,點M (0,m)在線段DE上,點P在曲線C上運(yùn)動.若當(dāng)點P的坐標(biāo)為(0,2)時,|
MP
|
取得最小值,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西)已知三點O(0,0),A(-2,1),B(2,1),曲線C上任意一點M(x,y)滿足|
MA
+
MB
|=
OM
•(
OA
+
OB
)+2.
(1)求曲線C的方程;
(2)動點Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點Q處的切線為l向:是否存在定點P(0,t)(t<0),使得l與PA,PB都不相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西)已知三點O(0,0),A(-2,1),B(2,1),曲線C上任意一點M(x,y)滿足|
MA
+
MB
|=
MA
•(
OA
+
OB
)+2

(1)求曲線C的方程;
(2)點Q(x0,y0)(-2<x0<2)是曲線C上動點,曲線C在點Q處的切線為l,點P的坐標(biāo)是(0,-1),l與PA,PB分別交于點D,E,求△QAB與△PDE的面積之比.

查看答案和解析>>

同步練習(xí)冊答案