已知AB是拋物線y2=2px的任一條焦點弦,且A(x1,y1)、B(x2,y2).

(1)求證:y1y2=-p2,x1x2=;

(2)若弦AB被焦點分成長為m、n的兩部分,求證:.

證明:(1)若AB的斜率不存在,則y1y2=-p2顯然成立;若斜率存在,可設(shè)AB方程為y=k(x-),代入y2=2px,得y2--p2=0,由方程可得y1y2=-p2,x1x2=.

(2)|AF|=x1+=m,|BF|=x2+=n.∴x1+x2=m+n-p.

又(x1+)(x2+)=x1x2+(x1+x2)+=mn,∴+(m+n-p)+=mn.

(m+n)=mn.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=ax(a>0)的焦點弦,且A(x1,y1),B(x2,y2),點F是拋物線的焦點,則有x1x2=
a2
16
a2
16
,y1y2=
-
a2
4
-
a2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=ax(a>0)的焦點弦,且A(x1,y1),B(x2,y2),點F是拋物線的焦點,則|AB|=
a
sin2θ
a
sin2θ
(θ為直線AB的傾斜角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=ax(a>0)的焦點弦,且A(x1,y1),B(x2,y2),點F是拋物線的焦點,則有S△AOB=
a2
8sinθ
a2
8sinθ
(θ為直線AB的傾斜角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=ax(a>0)焦點弦,且A(x1,y1),B(x2,y2),點F是拋物線的焦點,則有
1
|AF|
+
1
|BF|
=
4
a
4
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是拋物線y2=2Px的任意一條焦點弦,且A(x1,y1),B(x2,y2).
(1)求證y1y2=-p2,x1x2=
p2
4
;
(2)若弦AB被焦點分成長為m,n的兩部分,求證:
1
m
+
1
n
=
2
p

查看答案和解析>>

同步練習(xí)冊答案