向量
a
=(1,2),
b
=(-2,3),若m
a
-n
b
a
+2b共線(其中m,n∈R且n≠0),則
m
n
等于( 。
分析:現(xiàn)根據(jù)向量的數(shù)成、加法及減法運(yùn)算,求出向量m
a
-n
b
a
+2
b
,再由求得的兩向量共線列關(guān)于m和n的表達(dá)式即可得出結(jié)論.
解答:解:向量
a
=(1,2),
b
=(-2,3),
m
a
-n
b
=m(1,2)-n(-2,3)
=(m+2n,2m-3n),
a
+2
b
=(1,2)+2(-2,3)
=(-3,8).
(m
a
-n
b
)∥(
a
+2
b
)
得,(m+2n)×8-(2m-3n)×(-3)=0,所以14m+7n=0,
m
n
=-
1
2

故選A.
點(diǎn)評(píng):本題考查了向量共線的條件,已知向量
a
=(x1,y1)
,向量
b
=(x2y2)
,則
a
b
?x1y2-x2y1=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(x,2),則向量
a
+2
b
與2
a
-
b
( 。
A、垂直的必要條件是x=-2
B、垂直的充要條件是x=
7
2
C、平行的充分條件是x=-2
D、平行的充要條件是x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(1,2),
b
=(x,1),
c
=
a
+2
b
,
d
=2
a
-
b
,且
c
d
,則實(shí)數(shù)x的值等于( 。
A、-
1
2
B、-
1
6
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
.
a
=(1,2,3),
.
b
=(3,0,2),
.
c
=(4,2,X)共面,則X=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(1,2),
b
=(x,1),
c
=
a
+
b
d
=
a
-
b
,若
c
d
,則實(shí)數(shù)x的值等于
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•菏澤二模)下列命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<loga2<logb2,則a>b>1;
③已知a,b∈R*,2a+b=1,則
2
a
+
1
b
有最小值8;
④已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實(shí)數(shù)λ等于-1.
其中,正確命題的序號(hào)為
①②④
①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案