【題目】已知 ,方程f(x)=0有3個不同的根.
(1)求實數(shù)m的取值范圍;
(2)是否存在實數(shù)m,使得f(x)在(0,1)上恰有兩個極值點x1 , x2且滿足x2=2x1 , 若存在,求實數(shù)m的值;若不存在,說明理由.
【答案】
(1)解:由f(x)=0得: 或ln(x2+1﹣m)=0,
可得 或 ,
方程f(x)=0有3個不同的根,
從而0<m<1;
(2)解:由(1)得:0<m<1,
f′(x)=(3x2﹣m)ln(x2+1﹣m)+ ,
令x2=t,設 ,
∴g(0)=﹣mln(1﹣m)>0,∵0<m<1,
∴2﹣m>1,∴g(1)>0.g(a)=0,
,
∵0<m<1,∴g( )<0
∴存在t1∈(0, ),使得g(t1)=0,另外有m∈( ,1),使得g(a)=0
假設存在實數(shù)m,使得f(x)在(0,1)上恰有兩個極值點x1,x2,且滿足x2=2x1,
則存在x1∈(0, ),使得f′(x1)=0,另外有f′( )=0,即x2= ,
∴x1= ,∴f′( )=0,即(1﹣ m)ln(1﹣ m)+ m=0 (*)
設h(m)=(1﹣ m)ln(1﹣ m)+ m,
∴h′(a)=﹣ mln(1﹣ m)+ ,
∵0<m<1,∴h′(m)>0,
∴h(m)在(0,1)上是增函數(shù)
∴h(m)>h(0)=0
∴方程(*)無解,
即不存在實數(shù)m,使得f(x)在(0,1)上恰有兩個極值點x1,x2,且滿足x2=2x1.
【解析】(1)根據(jù)f(x)=0,得到關于m的不等式,解出m的范圍即可;(2)求導數(shù),換元,存在t1∈(0, ),使得g(t1)=0,另外有m∈( ,1),使得g(m)=0,再利用反證法,即可得出結論.
【考點精析】通過靈活運用函數(shù)的極值與導數(shù),掌握求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓上的點到它的兩個焦的距離之和為,以橢圓的短軸為直徑的圓經過這兩個焦點,點, 分別是橢圓的左、右頂點.
()求圓和橢圓的方程.
()已知, 分別是橢圓和圓上的動點(, 位于軸兩側),且直線與軸平行,直線, 分別與軸交于點, .求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種出口產品的關稅稅率,市場價格(單位:千元)與市場供應量(單位:萬件)之間近似滿足關系式:,其中、均為常數(shù).當關稅稅率為時,若市場價格為5千元,則市場供應量約為1萬件;當關稅稅率為時,若市場價格為7千元,則市場供應量約為2萬件.
(1)試確定、的值;
(2)市場需求量(單位:萬件)與市場價格近似滿足關系式:.當時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關稅稅率的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=﹣1,|an﹣an﹣1|=2n﹣1(n∈N,n≥2),且{a2n﹣1}是遞減數(shù)列,{a2n}是遞增數(shù)列,則a2016= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,側面ACC1A1與側面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求證:AB1⊥CC1;
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為偶函數(shù),求的值;
(2)若,求函數(shù)的單調遞增區(qū)間;
(3)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.
(1)證明:DB=DC;
(2)設圓的半徑為1,BC=3,延長CE交AB于點F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園ABCD,公園由形狀為長方形A1B1C1D1的休閑區(qū)和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米(如圖所示).
(1)若設休閑區(qū)的長和寬的比=x(x>1),求公園ABCD所占面積S關于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,則休閑區(qū)A1B1C1D1的長和寬該如何設計?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若函數(shù)在處的切線方程為,求的值;
(Ⅱ)當時,若不等式恒成立,求的取值范圍;
(Ⅲ)當時,若方程在上總有兩個不等的實根, 求的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com