在△ABC中,a=2,c=1,則角C的取值范圍是( )
A.(0,
B.(,
C.(,
D.(0,]
【答案】分析:根據(jù)正弦定理,代入題中數(shù)據(jù)得sinC=sinA,結(jié)合A為三角形內(nèi)角算出sinC∈(0,].根據(jù)正弦函數(shù)的圖象,可得C∈(0,]∪[,π),注意到a>c得C不是最大角,因此得到C∈(0,].
解答:解:∵△ABC中,a=2,c=1,
∴由正弦定理,得
由此可得sinC=sinA
∵A∈(0,π),可得0<sinA≤1,∴sinC∈(0,],
結(jié)合函數(shù)y=sinx的圖象,可得C∈(0,]∪[,π)
又∵a>c,可得角C是銳角,∴C∈(0,]
故選:D
點(diǎn)評:本題給出三角形的一邊為另一邊的2倍,求另一邊所對角的取值范圍.著重考查了三角函數(shù)的圖象與性質(zhì)和利用正余弦定理解三角形的知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,A=45°,則△ABC的外接圓半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,b=
2
,A=45°,則C-B=
75°
75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,b=2
2
,若三角形有解,則A的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,b=2,A=45°,此三角形解的情況為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,b=5,c=6,cosB等于( 。

查看答案和解析>>

同步練習(xí)冊答案