精英家教網 > 高中數學 > 題目詳情
(2012•廣州一模)如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA、AC、CB、BP的中點.
(1)求證:D、E、F、G四點共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,PC=
2
,求四面體PABC的體積.
分析:(1)先利用三角形中位線定理和平行公理證明DG∥EF,從而利用平面的性質公理證明四點共面;
(2)取AB中點為O,先利用線面垂直的判定定理證明AB⊥面POC,再利用線面垂直的定義證明結論即可;
(3)先利用線面垂直的判定定理證明PO⊥面ABC,再利用棱錐體積計算公式計算體積即可
解答:解:(1)依題意DG∥AB,EF∥AB,
∴DG∥EF,
∴DG、EF共面,從而D、E、F、G四點共面.
(2)取AB中點為O,連接PO、CO
∵PA=PB,CA=CB,∴PO⊥AB,CO⊥AB,
∵PO∩CO=O,∴AB⊥面POC
∵PC?面POC,∴AB⊥PC
(3)因為△ABC和PAB是等腰直角三角形,所以PO=CO=
1
2
AB=1
,
PC=
2
,OP2+OC2=PC2,∴OP⊥OC,
又PO⊥AB,且AB∩OC=O,
∴PO⊥面ABC
VP-ABC=
1
3
×PO×S△ABC=
1
3
×1×2×1×
1
2
=
1
3
點評:本題主要考查了三棱錐中的線面關系和計算,線面垂直的判定和定義,平面的基本性質及其公理,三棱錐體積計算公式等知識
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•廣州一模)如圖所示的莖葉圖記錄了甲、乙兩個小組(每小組4人)在期末考試中的數學成績.乙組記錄中有一個數據模糊,無法確認,在圖中以a表示.已知甲、乙兩個小組的數學成績的平均分相同.
(1)求a的值;
(2)求乙組四名同學數學成績的方差;
(3)分別從甲、乙兩組同學中各隨機選取一名同學,記這兩名同學數學成績之差的絕對值為X,求隨機變量X的分布列和均值(數學期望).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廣州一模)已知函數f(x)=-x3+ax2+b(a,b∈R).
(1)求函數f(x)的單調遞增區(qū)間;
(2)若對任意a∈[3,4],函數f(x)在R上都有三個零點,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廣州一模)設函數f(x)=ex(e為自然對數的底數),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N*).
(1)證明:f(x)≥g1(x);
(2)當x>0時,比較f(x)與gn(x)的大小,并說明理由;
(3)證明:1+(
2
2
)1+(
2
3
)2+(
2
4
)3+…+(
2
n+1
)ngn(1)<e
(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廣州一模)已知
e1
=(
3
,-1)
,
e2
=(
1
2
3
2
)
,若
a
=
e1
+(t2-3)•
e2
b
=-k•
e1
+t•
e2
,若
a
b
,則實數k和t滿足的一個關系式是
t3-3t-4k=0
t3-3t-4k=0
,
k+t2
t
的最小值為
-
7
4
-
7
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廣州一模)已知平面向量
a
=(1,3)
,
b
=(-3,x)
,且
a
b
,則
a
b
=(  )

查看答案和解析>>

同步練習冊答案