精英家教網 > 高中數學 > 題目詳情
用反證法證明:將9個球分別染成紅色或白色,那么無論怎么染,至少有5個球是同色的.其假設應是( )
A.至少有5個球是同色的
B.至少有5個球不是同色的
C.至多有4個球是同色的
D.至少有4個球不是同色的
【答案】分析:先將已知的命題進行否定,即得所求.
解答:解:利用反證法證明數學命題時,應先假設命題的否定成立.
命題:“將9個球分別染成紅色或白色,那么無論怎么染,至少有5個球是同色的”的否定為:
“將9個球分別染成紅色或白色,那么無論怎么染,任意5個球都不是同色的”,
即“至多有4個球是同色的”,
故選C.
點評:本題主要考查用命題的否定,反證法證明數學命題的方法和步驟,把要證的結論進行否定,得到要證的結論的反面,是解題的突破口,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

用反證法證明:將9個球分別染成紅色或白色,那么無論怎么染,至少有5個球是同色的.其假設應是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

用反證法證明:將9個球分別染成紅色或白色,那么無論怎么染,至少有5個球是同色的.其假設應是


  1. A.
    至少有5個球是同色的
  2. B.
    至少有5個球不是同色的
  3. C.
    至多有4個球是同色的
  4. D.
    至少有4個球不是同色的

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

用反證法證明:將9個球分別染成紅色或白色,那么無論怎么染,至少有5個球是同色的.其假設應是(  )
A.至少有5個球是同色的
B.至少有5個球不是同色的
C.至多有4個球是同色的
D.至少有4個球不是同色的

查看答案和解析>>

同步練習冊答案