設(shè)雙曲線的右焦點(diǎn)為F,直線l過點(diǎn)F.若直線l與雙曲線C的左、右兩支都相交,則直線l的斜率k的取值范圍是( )
A.
B.
C.
D.
【答案】分析:本題考查的知識(shí)點(diǎn)是雙曲線的性質(zhì),主要是漸近線的性質(zhì),如果l與雙曲線的左、右兩支都相交,則它的斜率要夾在兩條漸近線之間,由雙曲線的方程,我們不難得到雙曲線的漸近線方程,代入即可得到答案.
解答:解:∵雙曲線
∴雙曲線的漸近線方程為:
如果l與雙曲線的左、右兩支都相交,
則它的斜率要夾在兩條漸近線之間

故選C
點(diǎn)評(píng):如果l與雙曲線的左、右兩支都相交,則它的斜率要夾在兩條漸近線之間,這個(gè)性質(zhì)是解決問題的關(guān)鍵,一定要熟記,另外雙曲線焦點(diǎn)以X軸上時(shí),與焦點(diǎn)在Y軸上漸近線方程的差別一定要引起大家的重視,這是一個(gè)極易出錯(cuò)的地方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新疆烏魯木齊市高三第三次月考理科數(shù)學(xué) 題型:填空題

設(shè)雙曲線的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則雙曲線離心率的取值范圍是

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西南寧二中高三10月月考理科數(shù)學(xué)卷 題型:選擇題

設(shè)雙曲線的右焦點(diǎn)為F,右準(zhǔn)線與兩條漸近線交于P,Q兩點(diǎn),如果是直角三角形,則雙曲線的離心率為      (    )

    A.2    B.  C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年吉林省白山市高三(上)摸底數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)雙曲線的右焦點(diǎn)為F,過點(diǎn)F作與x軸垂直的直線l交兩漸近線于A、B兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若,且,則該雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省孝感市高三第一次統(tǒng)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)雙曲線的右焦點(diǎn)為F,右準(zhǔn)線l與兩條漸近線交于P,Q兩點(diǎn),如果△PQF是直角三角形,則雙曲線的離心率為( )
A.2
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省巢湖、六安、淮南三校(一中)高三1月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)雙曲線的右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩實(shí)根分別為x1,x2,則P(x1,x2)( )
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=2上
D.以上三種情況都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案