【題目】若函數(shù)對(duì)任意的均有則稱函數(shù)具有性質(zhì)

Ⅰ)判斷下面兩個(gè)函數(shù)是否具有性質(zhì)并說明理由.

Ⅱ)若函數(shù)具有性質(zhì),

求證:對(duì)任意

Ⅲ)在(Ⅱ)的條件下,是否對(duì)任意均有若成立,給出證明;若不成立,給出反例.

【答案】1具有,不具有2見解析3不成立

【解析】試題分析:(1)肯定結(jié)論需證明:根據(jù)定義比較大小,作差,提取因子,再利用基本不等式可得結(jié)論;對(duì)于否定結(jié)論,只需舉一個(gè)反例即可,(2)利用反證法證明,由于條件滿足差值單調(diào)遞增,利用累加可得矛盾,(3)構(gòu)造一個(gè)反例說明不成立,一般舉分段函數(shù),分有理數(shù)與無(wú)理數(shù)進(jìn)行列式.

試題解析:解:①函數(shù)具有性質(zhì)

因?yàn)?/span>

此函數(shù)為具有性質(zhì)

②函數(shù)不具有性質(zhì)

例如,當(dāng)時(shí),

所以此函數(shù)不具有性質(zhì)

Ⅱ)假設(shè)中第一個(gè)大于的值,

因?yàn)楹瘮?shù)具有性質(zhì)所以對(duì)于任意的均有

所以

所以

矛盾,

所以,對(duì)任意的

Ⅲ)不成立.

例如.

證明:當(dāng)為有理數(shù)時(shí), 均為有理數(shù),

當(dāng)為無(wú)理數(shù)時(shí), 均為無(wú)理數(shù),

所以,函數(shù)對(duì)任意的,均有

即函數(shù)具有性質(zhì)

而當(dāng)且當(dāng)為無(wú)理數(shù)時(shí),

所以,在(Ⅱ)的條件下,“對(duì)任意的均有不成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的離心率為,且過點(diǎn)

求橢圓的標(biāo)準(zhǔn)方程;

設(shè)直線l經(jīng)過點(diǎn)且與橢圓C交于不同的兩點(diǎn)MN試問:在x軸上是否存在點(diǎn)Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點(diǎn)Q的坐標(biāo)及定值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)常數(shù),使得函數(shù)對(duì)其公共定義域上的任意實(shí)數(shù)都滿足: 恒成立,則稱此直線的“隔離直線”,已知函數(shù), ,有下列命題:

內(nèi)單調(diào)遞增;

之間存在“隔離直線”,且的最小值為-4;

之間存在“隔離直線”,且的取值范圍是;

之間存在唯一的“隔離直線”.

其中真命題的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足a1man+1 (k∈N*,r∈R),其前n項(xiàng)和為.

(1)當(dāng)mr滿足什么關(guān)系時(shí),對(duì)任意的n∈N*,數(shù)列{an}都滿足an+2an?

(2)對(duì)任意實(shí)數(shù)m,r,是否存在實(shí)數(shù)pq,使得{a2n+1p}與{a2nq}是同一個(gè)等比數(shù)列.若存在,請(qǐng)求出pq滿足的條件;若不存在,請(qǐng)說明理由;

(3)當(dāng)mr=1時(shí),若對(duì)任意的n∈N*,都有Snλan,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測(cè)量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:

組別

頻數(shù)

頻率

145.5149.5

8

0.16

149.5153.5

6

0.12

153.5157.5

14

0.28

157.5161.5

10

0.20

161.5165.5

8

0.16

165.5169.5



合計(jì)



1)求出表中字母所對(duì)應(yīng)的數(shù)值;

2)在給出的直角坐標(biāo)系中畫出頻率分布直方圖;

3)估計(jì)該校高一女生身高在149.5165.5范圍內(nèi)有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若,判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a13,a2,且2an+13anan-1.

1)求證:數(shù)列{an+1an}是等比數(shù)列,并求數(shù)列{an}通項(xiàng)公式;

2)求數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意的正整數(shù)n恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖。 學(xué)校規(guī)定:成績(jī)不得低于85分的為優(yōu)秀

(1)根據(jù)以上數(shù)據(jù)填寫下列的的列聯(lián)表

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

(2)是否有的把握認(rèn)為成績(jī)優(yōu)異與教學(xué)方式有關(guān)?”(計(jì)算保留三位有效數(shù)字)

下面臨界值表僅供參考:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,底面ABC為正三角形,側(cè)棱AA1⊥底面ABC.已知D是BC的中點(diǎn),AB=AA1=2.

(I)求證:平面AB1D⊥平面BB1C1C;

(II)求證:A1C∥平面AB1D;

(III)求三棱錐A1-AB1D的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案