【題目】若函數(shù)對(duì)任意的均有則稱函數(shù)具有性質(zhì)
(Ⅰ)判斷下面兩個(gè)函數(shù)是否具有性質(zhì)并說明理由.
①②
(Ⅱ)若函數(shù)具有性質(zhì),且
求證:對(duì)任意有
(Ⅲ)在(Ⅱ)的條件下,是否對(duì)任意均有若成立,給出證明;若不成立,給出反例.
【答案】(1)具有,不具有(2)見解析(3)不成立
【解析】試題分析:(1)肯定結(jié)論需證明:根據(jù)定義比較大小,作差,提取因子,再利用基本不等式可得結(jié)論;對(duì)于否定結(jié)論,只需舉一個(gè)反例即可,(2)利用反證法證明,由于條件滿足差值單調(diào)遞增,利用累加可得矛盾,(3)構(gòu)造一個(gè)反例說明不成立,一般舉分段函數(shù),分有理數(shù)與無(wú)理數(shù)進(jìn)行列式.
試題解析:解:(Ⅰ)①函數(shù)具有性質(zhì)
因?yàn)?/span>即
此函數(shù)為具有性質(zhì)
②函數(shù)不具有性質(zhì)
例如,當(dāng)時(shí),
所以此函數(shù)不具有性質(zhì)
(Ⅱ)假設(shè)為中第一個(gè)大于的值,則
因?yàn)楹瘮?shù)具有性質(zhì)所以對(duì)于任意的均有
所以
所以
與矛盾,
所以,對(duì)任意的有
(Ⅲ)不成立.
例如.
證明:當(dāng)為有理數(shù)時(shí), 均為有理數(shù),
當(dāng)為無(wú)理數(shù)時(shí), 均為無(wú)理數(shù),
所以,函數(shù)對(duì)任意的,均有
即函數(shù)具有性質(zhì)
而當(dāng)且當(dāng)為無(wú)理數(shù)時(shí),
所以,在(Ⅱ)的條件下,“對(duì)任意的均有”不成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,且過點(diǎn).
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)直線l經(jīng)過點(diǎn)且與橢圓C交于不同的兩點(diǎn)M,N試問:在x軸上是否存在點(diǎn)Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點(diǎn)Q的坐標(biāo)及定值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在實(shí)常數(shù)和,使得函數(shù)和對(duì)其公共定義域上的任意實(shí)數(shù)都滿足: 和恒成立,則稱此直線為和的“隔離直線”,已知函數(shù), ,有下列命題:
①在內(nèi)單調(diào)遞增;
②和之間存在“隔離直線”,且的最小值為-4;
③和之間存在“隔離直線”,且的取值范圍是;
④和之間存在唯一的“隔離直線”.
其中真命題的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足a1=m,an+1= (k∈N*,r∈R),其前n項(xiàng)和為.
(1)當(dāng)m與r滿足什么關(guān)系時(shí),對(duì)任意的n∈N*,數(shù)列{an}都滿足an+2=an?
(2)對(duì)任意實(shí)數(shù)m,r,是否存在實(shí)數(shù)p與q,使得{a2n+1+p}與{a2n+q}是同一個(gè)等比數(shù)列.若存在,請(qǐng)求出p,q滿足的條件;若不存在,請(qǐng)說明理由;
(3)當(dāng)m=r=1時(shí),若對(duì)任意的n∈N*,都有Sn≥λan,求實(shí)數(shù)λ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測(cè)量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:
組別 | 頻數(shù) | 頻率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | ||
合計(jì) |
(1)求出表中字母所對(duì)應(yīng)的數(shù)值;
(2)在給出的直角坐標(biāo)系中畫出頻率分布直方圖;
(3)估計(jì)該校高一女生身高在149.5~165.5范圍內(nèi)有多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)若,判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=3,a2,且2an+1=3an﹣an-1.
(1)求證:數(shù)列{an+1﹣an}是等比數(shù)列,并求數(shù)列{an}通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意的正整數(shù)n恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖。 學(xué)校規(guī)定:成績(jī)不得低于85分的為優(yōu)秀
(1)根據(jù)以上數(shù)據(jù)填寫下列的的列聯(lián)表
甲 | 乙 | 總計(jì) | |
成績(jī)優(yōu)秀 | |||
成績(jī)不優(yōu)秀 | |||
總計(jì) |
(2)是否有的把握認(rèn)為成績(jī)優(yōu)異與教學(xué)方式有關(guān)?”(計(jì)算保留三位有效數(shù)字)
下面臨界值表僅供參考:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,底面ABC為正三角形,側(cè)棱AA1⊥底面ABC.已知D是BC的中點(diǎn),AB=AA1=2.
(I)求證:平面AB1D⊥平面BB1C1C;
(II)求證:A1C∥平面AB1D;
(III)求三棱錐A1-AB1D的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com