【題目】某健康社團(tuán)為調(diào)查居民的運(yùn)動(dòng)情況,統(tǒng)計(jì)了某小區(qū)100名居民平均每天的運(yùn)動(dòng)時(shí)長(zhǎng)(單位:小時(shí))并根據(jù)統(tǒng)計(jì)數(shù)據(jù)分為六個(gè)小組(所調(diào)查的居民平均每天運(yùn)動(dòng)時(shí)長(zhǎng)均在內(nèi)),得到的頻率分布直方圖如圖所示.

1)求出圖中的值,并估計(jì)這名居民平均每天運(yùn)動(dòng)時(shí)長(zhǎng)的平均值及中位數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);

2)為了分析出該小區(qū)居民平均每天的運(yùn)動(dòng)量與職業(yè)、年齡等的關(guān)系,該社團(tuán)按小組用分層抽樣的方法抽出20名居民進(jìn)一步調(diào)查,試問(wèn)在時(shí)間段內(nèi)應(yīng)抽出多少人?

【答案】1,平均值為2.4,中位數(shù)2.4 24

【解析】

1)頻率分布直方圖中各組的頻率之和為1,能求出.利用平均值及中位數(shù)計(jì)算公式即可得出平均值及中位數(shù).

2)先求得時(shí)間段的頻率,由此能求出時(shí)間段內(nèi)的人數(shù).

1)由,

解得.

100名居民運(yùn)動(dòng)時(shí)長(zhǎng)的平均值為

由圖可知中位數(shù)內(nèi),因?yàn)?/span>

解得.

2)由題知,時(shí)間段的頻率為

則應(yīng)抽出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了慶祝中華人民共和國(guó)成立周年,某車間內(nèi)舉行生產(chǎn)比賽,由甲乙兩組內(nèi)各隨機(jī)選取名技工,在單位時(shí)間生產(chǎn)同一種零件,其生產(chǎn)的合格零件數(shù)的莖葉圖如下:

已知兩組所選技工生產(chǎn)的合格零件的平均數(shù)均為.

1)分別求出的值;

2)分別求出甲乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此估計(jì)兩組技工的生產(chǎn)水平;

3)若單位時(shí)間內(nèi)生產(chǎn)的合格零件個(gè)數(shù)不小于平均數(shù)的技工即為生產(chǎn)能手,根據(jù)以上數(shù)據(jù),能否認(rèn)為該車間50%以上的技工都是生產(chǎn)能手?

(注:方差,其中為數(shù)據(jù)的平均數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)axx2,g(x)xlnaa>1.

(1)求證:函數(shù)F(x)f(x)g(x)(0,+∞)上單調(diào)遞增;

(2)若函數(shù)y3有四個(gè)零點(diǎn),求b的取值范圍;

(3)若對(duì)于任意的x1,x2∈[1,1]時(shí),都有|F(x2)F(x1)|≤e22恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , , 均可為一個(gè)三角形的三邊長(zhǎng),則稱函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).

)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;

)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fxgx)=3elnx+mx的圖象有4個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是(

A.(﹣3B.(﹣1,C.(﹣13D.0,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,直線的方程為2ρcosθ+5ρsinθ80,曲線E的方程為ρ4cosθ

1)以極點(diǎn)O為直角坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,分別寫出直線l與曲線E的直角坐標(biāo)方程;

2)設(shè)直線l與曲線E交于A,B兩點(diǎn),點(diǎn)C在曲線E上,求△ABC面積的最大值,并求此時(shí)點(diǎn)C的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)fx)=loga1+x+loga3x)(a0,a≠1)且f1)=2

1)求a的值及fx)的定義域;

2)求fx)在區(qū)間[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者,從符合條件的500名志愿者中隨機(jī)抽樣100名志原者的年齡情況如下表所示.

)頻率分布表中的、位置應(yīng)填什么數(shù)據(jù)?并在答題卡中補(bǔ)全頻率分布直方圖(如圖),再根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);

)在抽出的100名志愿者中按年齡再采用分層抽樣法抽取20人參加中心廣場(chǎng)的宣傳活動(dòng),從這20人中選取2名志愿者擔(dān)任主要負(fù)責(zé)人,記這2名志愿者中年齡低于30的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案