如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,ACBC=1,則異面直線A1BAC所成角的余弦值是    (  ).
A.  B.C.  D.
D
C為坐標(biāo)原點(diǎn),CA、CB、CC1所在直線分別為x、yz軸建立空間直角坐標(biāo)系,A1(1,0,2),B(0,1,0),A(1,0,0),C(0,0,0),

=(-1,1,-2), =(-1,0,0),cos〈〉=
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,ABCD是塊矩形硬紙板,其中AB=2AD,ADEDC的中點(diǎn),將它沿AE折成直二面角D-AE-B.

(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCDBCAB,ADBC,ABAD=2,CDPD,異面直線PACD所成角等于60°.

(1)求證:面PCD⊥面PBD;
(2)求直線PC和平面PAD所成角的正弦值的大;
(3)在棱PA上是否存在一點(diǎn)E,使得二面角A-BE-D的余弦值為?若存在,指出點(diǎn)E在棱PA上的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為矩形,PD⊥平面ABCDPDQA,QAADPD.

(1)求證:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值為-,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱中,,中點(diǎn).

(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,平面,上的點(diǎn),且.

(1)證明:;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,正方形與矩形所在平面互相垂直,,點(diǎn)的中點(diǎn).

(1)求證:∥平面;
(2)求證:;
(3)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐的底面為直角梯形,底面,且,,的中點(diǎn)。
(1)證明:面;
(2)求所成的角;
(3)求面與面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)向量的夾角為,=(2,1),3+=(5,4),則=    (     )
.          .               .       .

查看答案和解析>>

同步練習(xí)冊(cè)答案