【題目】已知函數(shù)的圖象在點(diǎn)處的切線(xiàn)斜率為,其中為自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)的值,并求的單調(diào)區(qū)間;
(2)證明:.
【答案】(1),函數(shù)的單調(diào)遞減區(qū)間,函數(shù)單調(diào)遞增區(qū)間;(2)證明見(jiàn)解析.
【解析】
(1)先對(duì)函數(shù)求導(dǎo),然后結(jié)合導(dǎo)數(shù)的幾何意義可求,結(jié)合導(dǎo)數(shù)與單調(diào)性關(guān)系即可求解.
(2)要證明原不等式成立,可轉(zhuǎn)化為證明求解相應(yīng)函數(shù)的范圍,進(jìn)行合理的變形后構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)可證.
解:(1)函數(shù)的定義域?yàn)?/span>.,由題意可得,e,故a,.
當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),,函數(shù)單調(diào)遞增,故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)證明:設(shè),則.
當(dāng)x時(shí),,函數(shù)單調(diào)遞減,當(dāng)x時(shí),,函數(shù)單調(diào)遞增,故.
設(shè),則,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,故.
綜上可得,時(shí),恒有,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙3人站到共有6級(jí)的臺(tái)階上,若每級(jí)臺(tái)階最多站2人,同一級(jí)臺(tái)階上的人不區(qū)分站的位置,則不同的站法總數(shù)是( )
A.90B.120C.210D.216
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,上頂點(diǎn)為M,過(guò)點(diǎn)M且斜率為的直線(xiàn)與交于另一點(diǎn)N,過(guò)原點(diǎn)的直線(xiàn)l與交于P,Q兩點(diǎn)
(1)求周長(zhǎng)的最小值:
(2)是否存在這樣的直線(xiàn),使得與直線(xiàn)平行的弦的中點(diǎn)都在該直線(xiàn)上?若存在,求出該直線(xiàn)的方程:若不存在,請(qǐng)說(shuō)明理由.
(3)直線(xiàn)l與線(xiàn)段相交,且四邊形的面積,求直線(xiàn)l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高生產(chǎn)線(xiàn)的運(yùn)行效率,工廠對(duì)生產(chǎn)線(xiàn)的設(shè)備進(jìn)行了技術(shù)改造.為了對(duì)比技術(shù)改造后的效果,采集了生產(chǎn)線(xiàn)的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長(zhǎng)度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:
(Ⅰ)(1)設(shè)所采集的40個(gè)連續(xù)正常運(yùn)行時(shí)間的中位數(shù),并將連續(xù)正常運(yùn)行時(shí)間超過(guò)和不超過(guò)的次數(shù)填入下面的列聯(lián)表:
超過(guò) | 不超過(guò) | |
改造前 | ||
改造后 |
試寫(xiě)出,,,的值;
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線(xiàn)技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)工廠的生產(chǎn)線(xiàn)的運(yùn)行需要進(jìn)行維護(hù).工廠對(duì)生產(chǎn)線(xiàn)的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對(duì)生產(chǎn)線(xiàn)設(shè)定維護(hù)周期為天(即從開(kāi)工運(yùn)行到第天()進(jìn)行維護(hù).生產(chǎn)線(xiàn)在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)線(xiàn)能連續(xù)運(yùn)行,則不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線(xiàn)不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測(cè)算,正常維護(hù)費(fèi)為0.5萬(wàn)元次;保障維護(hù)費(fèi)第一次為0.2萬(wàn)元周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬(wàn)元.現(xiàn)制定生產(chǎn)線(xiàn)一個(gè)生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,,2,3,4.以生產(chǎn)線(xiàn)在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)E,F分別是棱C1D1,B1C1的中點(diǎn),P是上底面A1B1C1D1內(nèi)一點(diǎn),若AP∥平面BDEF,則線(xiàn)段AP長(zhǎng)度的取值范圍是( )
A.[,]B.[,]C.[,]D.[,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),則下列判斷正確的是( )
A.函數(shù)的最小正周期為,在上單調(diào)遞增
B.函數(shù)的最小正周期為,在上單調(diào)遞增
C.函數(shù)的最小正周期為,在上單調(diào)遞增
D.函數(shù)的最小正周期為,在上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市積極貫徹落實(shí)國(guó)務(wù)院《“十三五”節(jié)能減排綜合工作方案》,空氣質(zhì)量明顯改善.該市生態(tài)環(huán)境局統(tǒng)計(jì)了某月(30天)空氣質(zhì)量指數(shù),繪制成如下頻率分布直方圖.已知空氣質(zhì)量等級(jí)與空氣質(zhì)量指數(shù)對(duì)照如下表:
空氣質(zhì)量指數(shù) | 300以上 | |||||
空氣質(zhì)量等級(jí) | 一級(jí) (優(yōu)) | 二級(jí) (良) | 三級(jí) (輕度污染) | 四級(jí) (中度污染) | 五級(jí) (重度污染) | 六級(jí) (嚴(yán)重污染) |
(1)根據(jù)頻率分布直方圖估計(jì),在這30天中,空氣質(zhì)量等級(jí)為優(yōu)或良的天數(shù);
(2)根據(jù)體質(zhì)檢查情況,醫(yī)生建議:當(dāng)空氣質(zhì)量指數(shù)高于90時(shí),市民甲不宜進(jìn)行戶(hù)外體育運(yùn)動(dòng);當(dāng)空氣質(zhì)量指數(shù)高于70時(shí),市民乙不宜進(jìn)行戶(hù)外體育運(yùn)動(dòng)(兩人是否進(jìn)行戶(hù)外體育運(yùn)動(dòng)互不影響).
①?gòu)倪@30天中隨機(jī)選取2天,記乙不宜進(jìn)行戶(hù)外體育運(yùn)動(dòng),且甲適宜進(jìn)行戶(hù)外體育運(yùn)動(dòng)的天數(shù)為X,求X的分布列和數(shù)學(xué)期望;
②以該月空氣質(zhì)量指數(shù)分布的頻率作為以后每天空氣質(zhì)量指數(shù)分布的概率(假定每天空氣質(zhì)量指數(shù)互不影響),甲、乙兩人后面分別隨機(jī)選擇3天和2天進(jìn)行戶(hù)外體育運(yùn)動(dòng),求甲恰有2天,且乙恰有1天不宜進(jìn)行戶(hù)外體育運(yùn)動(dòng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C1的極坐標(biāo)方程為ρsinθ=2.
(1)M為曲線(xiàn)C1上的動(dòng)點(diǎn),點(diǎn)P在線(xiàn)段OM上,且滿(mǎn)足,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(2)曲線(xiàn)C2上兩點(diǎn)與點(diǎn)B(ρ2,α),求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)前后,一場(chǎng)突如其來(lái)的新冠肺炎疫情在全國(guó)蔓延.疫情就是命令,防控就是責(zé)任.在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國(guó)人民眾志成城、團(tuán)結(jié)一心,掀起了一場(chǎng)堅(jiān)決打贏疫情防控阻擊戰(zhàn)的人民戰(zhàn)爭(zhēng).下側(cè)的圖表展示了2月14日至29日全國(guó)新冠肺炎疫情變化情況,根據(jù)該折線(xiàn)圖,下列結(jié)論正確的是( )
A.16天中每日新增確診病例數(shù)量呈下降趨勢(shì)且19日的降幅最大
B.16天中每日新增確診病例的中位數(shù)大于新增疑似病例的中位數(shù)
C.16天中新增確診、新增疑似、新增治愈病例的極差均大于
D.19日至29日每日新增治愈病例數(shù)量均大于新增確診與新增疑似病例之和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com