已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點,且,求證:;
(Ⅲ)設(shè),對于任意時,總存在,使成立,求實數(shù)的取值范圍.
(1)的遞增區(qū)間為和,遞減區(qū)間為;(2)詳見解析;(Ⅲ)實數(shù)的取值范圍為.
解析試題分析:(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間,由于函數(shù)含有對數(shù)函數(shù),可通過求導(dǎo)來確定單調(diào)區(qū)間,由函數(shù),對求導(dǎo)得,,令,,解不等式得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,且,求證:,由于有兩個極值點,則有兩個不等的實根,由根與系數(shù)關(guān)系可得,,用表示,代入,利用即可證明;(Ⅲ)對于任意時,總存在,使成立,即恒成立,因此求出,這樣問題轉(zhuǎn)化為,在上恒成立,構(gòu)造函數(shù),分類討論可求出實數(shù)的取值范圍.
試題解析:
(1)當(dāng)時,,
令或,,
的遞增區(qū)間為和,遞減區(qū)間為.
(2)由于有兩個極值點,則有兩個不等的實根,
設(shè)
,在上遞減,
,即.
(Ⅲ),
,,在遞增,
,
在上恒成立
令,
則在上恒成立
,又
當(dāng)時,,在(2,4)遞減,,不合;
當(dāng)時,,
①時,在(2,
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x+ax2+bln x,曲線y=f(x)在點P(1,0)處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點在圓弧上,點在兩半徑上,現(xiàn)將此矩形材料卷成一個以為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)與矩形材料的邊的夾角為,圓柱的體積為.
(Ⅰ)求關(guān)于的函數(shù)關(guān)系式?
(Ⅱ)求圓柱形罐子體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若存在使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若,則,滿足什么條件時,曲線與在處總有相同的切線?
(2)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時,若對任意的恒成立,求的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lnx-ax(a>0).
(I)當(dāng)a=2時,求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若對于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)當(dāng)時,求函數(shù)的極小值;
(Ⅱ)若函數(shù)在上為增函數(shù),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com