已知隨機(jī)變量XN(1,4)P(X<2)0.72,則P(1<X<2)等于(  )

A0.36 B0.16 C0.22 D0.28

 

C

【解析】P(X<2)0.72可得P(X≥2)10.720.28,由正態(tài)曲線對(duì)稱性可知P(X>1)0.5,所以P(1<X<2)P(X>1)P(X≥2)0.50.280.22.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題

設(shè)直線lxym0與拋物線Cy24x交于不同兩點(diǎn)A,B,F 為拋物線的焦點(diǎn).

(1)ABF的重心G的軌跡方程;

(2)如果m=-2,求ABF的外接圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷3練習(xí)卷(解析版) 題型:選擇題

設(shè){an}是公差不為0的等差數(shù)列,a12a1a3,a6成等比數(shù)列,則{an} 的前n項(xiàng)和Sn(  )

A. B. C. Dn2n

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:選擇題

將函數(shù)ycos 2x的圖象向右平移個(gè)單位,得到函數(shù)yf(x)·sin x的圖象,則f(x)的表達(dá)式可以是(  )

Af(x)=-2cos x Bf(x)2cos x

Cf(x)sin 2x Df(x) (sin 2xcos 2x)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:填空題

一出租車司機(jī)從飯店到火車站的途中經(jīng)過六個(gè)交通崗,假設(shè)他在各交通崗遇到紅燈這一事件是相互獨(dú)立的,并且概率都是.那么這位司機(jī)遇到紅燈前,已經(jīng)通過了兩個(gè)交通崗的概率是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:解答題

如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A點(diǎn)作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OPOA2;

(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,且交圓OB點(diǎn).過B點(diǎn)的切線交直線ONK.證明:OKM90°.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題

如圖,已知RtABC的兩條直角邊AC,BC的長(zhǎng)分別為3 cm,4 cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD________cm.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)sin (2xφ),其中φ為實(shí)數(shù),若f(x)≤ 對(duì)xR恒成立,且<f(π),則下列結(jié)論正確的是(  )

A=-1

Bf>f

Cf(x)是奇函數(shù)

Df(x)的單調(diào)遞增區(qū)間是 (kZ)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:填空題

我們把形如y (a>0,b>0)的函數(shù)因其圖象類似于漢字中的字,故生動(dòng)地稱為囧函數(shù),若當(dāng)a1,b1時(shí)的囧函數(shù)與函數(shù)ylg|x|的交點(diǎn)個(gè)數(shù)為n,則n________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案