設定義在R上的函數f(x)滿足以下兩個條件:(1)對?x∈R,都有f(x)+f(-x)=0成立;(2)當x<0時,(x2+2x)f'(x)≥0
則下列不等關系中正確的是( )
A.f(-1)≤f(0)
B.f(-2)≤f(-3)
C.f(2)≥f(0)
D.f(1)≥f(2)
【答案】分析:利用奇函數的定義判斷出f(x)是奇函數,通過解二次不等式判斷出x2+2x的符號,從而得到導函數f′(x)的符號,判斷出函數f(x)的單調性,利用f(x)的單調性判斷出A,B錯;利用f(x)的單調性與奇函數判斷出C錯D對.
解答:解:∵對?x∈R,都有f(x)+f(-x)=0成立
∴f(x)為奇函數
∵當x<-2時,x2+2x>0;當-2<x<0時,x2+2x>0
又∵當x<0時,(x2+2x)f'(x)≥0
∴當x<-2時,f'(x)≥0,函數f(x)遞增或為常函數;當-2<x<0時,f'(x)≤0,函數f(x)遞減或為常函數
∴f(-1)≥f(0),故A錯
f(-2)≥f(-3),故B錯
f(-2)≥f(0)即-f(2)≥f(0)即f(2)≤f(0),故C錯
f(-1)≤f(-2)即-f(1)≤-f(2)即f(1)≥f(2)故D對
故選D.
點評:判斷函數的奇偶性應該利用奇函數、偶函數的定義;利用導函數的符號判斷函數的單調性:當導函數為正,函數遞增;當導函數為負,函數遞減.