已知向量
a
=(2,-1),
b
=(-4,m)
,如果
a
b
,則m=
2
2
分析:由向量
a
=(2,-1),
b
=(-4,m)
,
a
b
,知
-4
2
=
m
-1
,由此能求出m.
解答:解:∵向量
a
=(2,-1),
b
=(-4,m)
,
a
b
,
-4
2
=
m
-1
,
解得m=2.
故答案為:2.
點(diǎn)評(píng):本題考查平面向量共線的坐標(biāo)表示,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,  3),
b
=(-1,  2)
,若m
a
+4
b
a
-2
b
共線,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=( 2,  -3 ),?
b
=( 3,  λ )
,若
a
b
,則λ等于(  )
A、
2
3
B、-2
C、-
9
2
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,4),
b
=(x,1)
,且
a
b
,則x的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,1),
b
=(1,k)
,且
a
b
的夾角為銳角,則實(shí)數(shù)k的取值范圍是
k>-2且k≠
1
2
k>-2且k≠
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,1),
b
=(-1,x),若(
a
+
b
)與(
a
-
b
)共線,x
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案