(1)化簡(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)

(2)解不等式
2x-1
3
3x-1
2
-4

(3)解方程
4
x+3
-
1
x-3
=1-
2x
x2-9
分析:(1)中注意觀察式子特點,寫為分式形式,提取公因式解決;
(2)為一元一次不等式,先化為標準型ax+b>0,直接寫解集即可;
(3)為分式方程,先化為整式,注意等價變形.
解答:解:(1)原式=
a
a+b
(1-
a
a+b
)
a
a+b
(1-
a
a-b
)
=
b-a
a+b

(2)
2x-1
3
3x-1
2
-4
.?
5
6
x<
25
6
,故解集為{x|x<5}
(3)可得x2-5x+6=0,x=2,x=3(增根)
故原方程的解為x=2.
點評:本題考查多項式的化簡、解一元一次不等式、解分式方程,屬基本題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)化簡(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)
;
(2)計算
1
2
lg25+lg2-lg
0.1
-log29×log32
;
(3)
-1
=i
,驗算i是否方程2x4+3x3-3x2+3x-5=0的解;
(4)求證:
sin(
π
4
+θ)
sin(
π
4
-θ)
+
cos(
π
4
+θ)
cos(
π
4
-θ)
=
2
cos2θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各個面都是平行四邊形的四棱柱ABCD-A′B′C′D′
(1)化簡
1
2
AA′
+
BC
+
2
3
AB
,并在圖形中標出其結果;
(2)設M是底面ABCD的中心,N是側面BCC′B′的對角線BC′上的點,且BN:NC′=3:1,設
MN
AB
AD
AA′
,試求α,β,γ的值.

查看答案和解析>>

科目:高中數(shù)學 來源:上海 題型:解答題

(1)化簡(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)
;
(2)計算
1
2
lg25+lg2-lg
0.1
-log29×log32
;
(3)
-1
=i
,驗算i是否方程2x4+3x3-3x2+3x-5=0的解;
(4)求證:
sin(
π
4
+θ)
sin(
π
4
-θ)
+
cos(
π
4
+θ)
cos(
π
4
-θ)
=
2
cos2θ

查看答案和解析>>

科目:高中數(shù)學 來源:上海 題型:解答題

(1)化簡(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)

(2)解不等式
2x-1
3
3x-1
2
-4
;
(3)解方程
4
x+3
-
1
x-3
=1-
2x
x2-9

查看答案和解析>>

同步練習冊答案