12.在平面內(nèi),定點(diǎn)A,B,C,O滿足$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}$|=2,$\overrightarrow{OA}•(\frac{AC}{{|{\overrightarrow{AC}}|}}-\frac{AB}{{|{\overrightarrow{AB}}|}})$=$\overrightarrow{OB}•(\frac{BC}{{|{\overrightarrow{BC}}|}}-\frac{BA}{{|{\overrightarrow{BA}}|}})=0$,動(dòng)點(diǎn)P,M滿足$|{\overrightarrow{AP}}|=1,\overrightarrow{PM}=\overrightarrow{MC},則{|{\overrightarrow{BM}}|^2}$的最大值是( 。
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37}{4}$D.$\frac{37}{2}$

分析 由題意,判斷O是△ABC的外心,也是△ABC的內(nèi)心,
得出△ABC是正三角形,求出邊長(zhǎng);
再利用平面直角坐標(biāo)系,得出點(diǎn)P的軌跡方程,
根據(jù)$\overrightarrow{PM}$=$\overrightarrow{MC}$得出點(diǎn)M的坐標(biāo)表示,求|$\overrightarrow{BM}$|2的最大值.

解答 解:由$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}$|=2知,O是△ABC的外心;
$\overrightarrow{OA}•(\frac{AC}{{|{\overrightarrow{AC}}|}}-\frac{AB}{{|{\overrightarrow{AB}}|}})$=$\overrightarrow{OB}•(\frac{BC}{{|{\overrightarrow{BC}}|}}-\frac{BA}{{|{\overrightarrow{BA}}|}})=0$,
∴$\frac{\overrightarrow{OA}•\overrightarrow{AC}}{|\overrightarrow{AC}|}$-$\frac{\overrightarrow{OA}•\overrightarrow{AB}}{|\overrightarrow{AB}|}$=$\frac{\overrightarrow{OB}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$-$\frac{\overrightarrow{OB}•\overrightarrow{BA}}{|\overrightarrow{BA}|}$=0,
當(dāng)$\frac{\overrightarrow{OA}•\overrightarrow{AC}}{|\overrightarrow{AC}|}$-$\frac{\overrightarrow{OA}•\overrightarrow{AB}}{|\overrightarrow{AB}|}$=0時(shí),$\frac{\overrightarrow{OA}•\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{\overrightarrow{OA}•\overrightarrow{AB}}{|\overrightarrow{AB}|}$,
即$\frac{|\overrightarrow{OA}|×|\overrightarrow{AC}|×cos∠DAC}{|\overrightarrow{AC}|}$=$\frac{|\overrightarrow{OA}|×|\overrightarrow{AB}|×cos∠DAB}{|\overrightarrow{AB}|}$,
∴cos∠DAC=cos∠DAB
∴∠DAC=∠DAB,
∴O點(diǎn)在三角形的角A平分線上;
同理,O點(diǎn)在三角形的角B,角C平分線上;
∴點(diǎn)定O的一定是△ABC的內(nèi)心,如圖1所示;
∴△ABC是正三角形,且邊長(zhǎng)為$\frac{2+1}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$;
如圖2所示,建立平面直角坐標(biāo)系;則B(0,0),C(2$\sqrt{3}$,0),A($\sqrt{3}$,3);
∵M(jìn)滿足|$\overrightarrow{AP}$|=1,∴點(diǎn)P的軌跡方程為:${(x-\sqrt{3})}^{2}$+(y-3)2=1;
令x=$\sqrt{3}$+cosθ,y=3+sinθ,θ∈[0,2π),
由$\overrightarrow{PM}$=$\overrightarrow{MC}$,得M($\frac{3\sqrt{3}}{2}$+$\frac{1}{2}$cosθ,$\frac{3}{2}$+$\frac{1}{2}$sinθ),
∴|$\overrightarrow{BM}$|2=${(\frac{3\sqrt{3}}{2}+\frac{1}{2}cosθ)}^{2}$+${(\frac{3}{2}+\frac{1}{2}sinθ)}^{2}$=$\frac{37}{4}$+3sin(θ+$\frac{π}{3}$)≤$\frac{49}{4}$;
∴|$\overrightarrow{BM}$|2的最大值是$\frac{49}{4}$.
故選:B.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與圓的參數(shù)方程、三角函數(shù)求值問題,也考查了推理能力與計(jì)算能力,是難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{ln({x+1})({x>0})}\\{\frac{1}{2}x+1({x≤0})}\end{array}}\right.$,如果存在實(shí)數(shù)s,t,其中s<t,使得f(s)=f(t),則t-s的取值范圍是(  )
A.[3-2ln2,2)B.[3-2ln2,e-1]C.[e-1,2]D.[0,e+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),當(dāng)k為何值時(shí),
k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-3$\overrightarrow$平行?平行時(shí)它們是同向還是反向?
(2)設(shè)f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{π}{2}+θ)-sin(\frac{3π}{2}-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+\frac{2}{e},x<0\\ \frac{x}{e^x},x≥0\end{array}\right.$,若f(x1)=f(x2)=f(x3)(x1<x2<x3),則$\frac{{f({x_2})}}{x_1}$的取值范圍為(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系中,定義點(diǎn)P(x1,y1)、Q(x2,y2)之間的直角距離為L(zhǎng)(P,Q)=|x1-x2|+|y1-y2|.
已知點(diǎn)A(x,1),B(1,2),C(5,3).
(1)若L(A,B)>L(A,C),求x的取值范圍;
(2)當(dāng)x∈R時(shí),不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和是Sn=(n+2)2+k,當(dāng)k=-4時(shí),{an}是公差d=2的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知sinθ+cosθ=sinθcosθ,則角θ所在的區(qū)間可能是( 。
A.($\frac{π}{4}$,$\frac{π}{2}$)B.($\frac{π}{2}$,$\frac{3π}{4}$)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.(π,$\frac{5π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)點(diǎn)O為原點(diǎn),點(diǎn)A,B的坐標(biāo)分別為(a,0),(0,a),其中a是正的常數(shù),點(diǎn)P在線段AB上,且$\overrightarrow{AP}$=t$\overrightarrow{AB}$(0≤t≤1),則$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值為a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了解今年某省高三畢業(yè)班準(zhǔn)備報(bào)考飛行員學(xué)生的體重情況,現(xiàn)采用隨機(jī)抽樣的方法抽取了一個(gè)樣本容量為240的樣本,并將所得的數(shù)據(jù)整理后,畫出了如圖所示的頻率分布直方圖(計(jì)算結(jié)果用分?jǐn)?shù)表示).
(1)求a的值,并用該樣本估計(jì)全省報(bào)考飛行員學(xué)生的體重的中位數(shù);
(2)若以樣本數(shù)據(jù)估計(jì)全省的總體數(shù)據(jù),且從全省報(bào)考飛行員的學(xué)生中(人數(shù)很多)任選二人,設(shè)X表示體重超過60kg的學(xué)生人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案