(09年海淀區(qū)二模理)(13分)已知:函數(shù)(其中常數(shù)).

(Ⅰ)求函數(shù)的定義域及單調(diào)區(qū)間;

(Ⅱ)若存在實數(shù),使得不等式成立,求a的取值范圍.

解析:(Ⅰ)函數(shù)的定義域為.    ………………………………1分

.       …………………………3分

,解得.

,解得

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

………………………………………6分

(Ⅱ)由題意可知,,且上的最小值小于等于時,存在實數(shù),使得不等式成立.                             ………………………………………7分

時,

x

a+1

-

0

+

極小值

上的最小值為

,得.      ……………………………………10分

時,上單調(diào)遞減,則上的最小值為

(舍).        …………………………………12分

綜上所述,.         ……………………………………13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年海淀區(qū)二模理)(14分)已知定義域為,滿足:

;

②對任意實數(shù),有.

(Ⅰ)求,的值;

(Ⅱ)求的值;

(Ⅲ)是否存在常數(shù),使得不等式對一切實數(shù)成立.如果存在,求出常數(shù)的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年海淀區(qū)二模理)(13分)

已知拋物線C:,過定點,作直線交拋物線于(點在第一象限).

(Ⅰ)當(dāng)點A是拋物線C的焦點,且弦長時,求直線的方程;

(Ⅱ)設(shè)點關(guān)于軸的對稱點為,直線軸于點,且.求證:點B的坐標(biāo)是并求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年海淀區(qū)二模理)(13分)

檢測部門決定對某市學(xué)校教室的空氣質(zhì)量進(jìn)行檢測,空氣質(zhì)量分為AB、C三級. 每間教室的檢測方式如下:分別在同一天的上、下午各進(jìn)行一次檢測,若兩次檢測中有C級或兩次都是B級,則該教室的空氣質(zhì)量不合格. 設(shè)各教室的空氣質(zhì)量相互獨立,且每次檢測的結(jié)果也相互獨立. 根據(jù)多次抽檢結(jié)果,一間教室一次檢測空氣質(zhì)量為A、B、C三級的頻率依次為.  

(Ⅰ)在該市的教室中任取一間,估計該間教室的空氣質(zhì)量合格的概率;

(Ⅱ)如果對該市某中學(xué)的4間教室進(jìn)行檢測,記在上午檢測空氣質(zhì)量為A級的教室間數(shù)為,并以空氣質(zhì)量為A級的頻率作為空氣質(zhì)量為A級的概率,求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年海淀區(qū)二模理)(13分)

已知數(shù)列的前項和為,, ,).

,成等差數(shù)列.

(Ⅰ)求的值;

    (Ⅱ)求數(shù)列的通項公式

查看答案和解析>>

同步練習(xí)冊答案