在直接坐標(biāo)系中,直線的方程為,曲線的參數(shù)方程為為參數(shù)).
(I)已知在極坐標(biāo)(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,點的極坐標(biāo)為(4,),判斷點與直線的位置關(guān)系;
(II)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.
(I)點P在直線上。(II)且最小值為

試題分析:(I)把極坐標(biāo)系下的點化為直角坐標(biāo),得P(0,4)。
因為點P的直角坐標(biāo)(0,4)滿足直線的方程,所以點P在直線上,
(II)因為點Q在曲線C上,故可設(shè)點Q的坐標(biāo)為,從而點Q到直線的距離為

由此得,當(dāng)時,d取得最小值,且最小值為
點評:中檔題,利用化歸與轉(zhuǎn)化思想,應(yīng)用,實現(xiàn)極坐標(biāo)與直角坐標(biāo)的互化。利用曲線的參數(shù)方程,往往可將問題轉(zhuǎn)化成三角函數(shù)問題,利用三角函數(shù)的圖象和性質(zhì),使問題得解。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為雙曲線的兩個焦點,點在此雙曲線上,,如果此雙曲線的離心率等于,那么點軸的距離等于               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)AB是橢圓Γ的長軸,點C在Γ上,且∠CBA=,若AB=4,BC=,則Γ的兩個焦點之間的距離為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線與橢圓相交于,兩點,為坐標(biāo)原點.
(Ⅰ)當(dāng)點的坐標(biāo)為,且四邊形為菱形時,求的長;
(Ⅱ)當(dāng)點上且不是的頂點時,證明:四邊形不可能為菱形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的頂點A在射線上,兩點關(guān)于x軸對稱,0為坐標(biāo)原點,且線段AB上有一點M滿足當(dāng)點A在上移動時,記點M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過的直線與W相交于P,Q兩點,使得若存在,
求出直線;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線為常數(shù)),為其焦點.

(1)寫出焦點的坐標(biāo);
(2)過點的直線與拋物線相交于兩點,且,求直線的斜率;
(3)若線段是過拋物線焦點的兩條動弦,且滿足,如圖所示.求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的長軸長為,離心率
Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
Ⅱ)若過點B(2,0)的直線(斜率不等于零)與橢圓C交于不同的兩點E,F(xiàn)(E在B,F(xiàn)之間),且OBE與OBF的面積之比為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,南北方向的公路 ,A地在公路正東2 km處,B地在A東偏北300方向2 km處,河流沿岸曲線上任意一點到公路和到地距離相等.現(xiàn)要在曲線上一處建一座碼頭,向兩地運(yùn)貨物,經(jīng)測算,從、到修建費(fèi)用都為a萬元/km,那么,修建這條公路的總費(fèi)用最低是(  )萬元
A.(2+)aB.2(+1)aC.5aD.6ª

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y2=4x的準(zhǔn)線過雙曲線=1(a>0,b>0)的左頂點,且此雙曲線的一條漸
近線方程為y=2x,則雙曲線的焦距等于 (  ).
A.B.2C.D.2

查看答案和解析>>

同步練習(xí)冊答案