分析 根據(jù)圓的特殊性,設圓心為C,則有CM⊥AB,當斜率存在時,kCMkAB=-1,斜率不存在時加以驗證.
解答 解:設圓x2+y2-6x+5=0的圓心為C,則C的坐標是(3,0),由題意,CM⊥AB,
①設M(x,y),當直線CM與AB的斜率都存在時,即x≠3,x≠0時,則有kCMkAB=-1,
∴$\frac{y}{x-3}$×$\frac{y}{x}$=-1(x≠3,x≠0),
化簡得x2+y2-3x=0(x≠3,x≠0),
②當x=3時,y=0,點(3,0)適合題意,
③當x=0時,y=0,點(0,0)不適合題意,
解方程組$\left\{\begin{array}{l}{{x}^{2}{+y}^{2}-3x=0}\\{{x}^{2}+{y}^{2}-6x+5=0}\end{array}\right.$得x=$\frac{5}{3}$,y=±$\frac{2\sqrt{5}}{3}$,
∴點M的軌跡方程是:x2+y2-3x=0($\frac{5}{3}$<x≤3).
故答案為:x2+y2-3x=0($\frac{5}{3}$<x≤3).
點評 本題主要考查軌跡方程的求解,應注意利用圓的特殊性,同時注意所求軌跡的純粹性,避免增解.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1,-1) | B. | (0,-1,6) | C. | (0,1,-6) | D. | (0,1,6) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com