【題目】橢圓的中心在原點(diǎn)O,短軸長(zhǎng)為 ,左焦點(diǎn)為F(﹣c,0)(c>0),直線 與x軸交于點(diǎn)A,且 ,過點(diǎn)A的直線與橢圓相交于P,Q兩點(diǎn).
(1)求橢圓的方程.
(2)若 ,求直線PQ的方程.
【答案】
(1)解:設(shè) ,
則 , ,
解得a2=4,c=1,
所以橢圓方程為 .
(2)解:設(shè)PQ的方程為y=k(x+4),P(x1,y1),Q(x2,y2),F(xiàn)(﹣1,0)
∵PF⊥QF,∴(x1+1)(x2+1)+y1y2=0,
即 , .
聯(lián)立得
消去y,得(3+4k2)x2+32k2x+64k2﹣12=0,
由△>0,得 .
∴ .
代入(*)式化簡(jiǎn),得8k2=1,∴ .
則直線PQ的方程為 .
【解析】(1)設(shè) ,由題意可得 , ,c2=a2+b2 , 解出即可;(2)設(shè)PQ的方程為y=k(x+4),P(x1 , y1),Q(x2 , y2),F(xiàn)(﹣1,0),把方程與橢圓方程聯(lián)立得到根與系數(shù)的關(guān)系,再利用 即可得出.
【考點(diǎn)精析】關(guān)于本題考查的橢圓的標(biāo)準(zhǔn)方程,需要了解橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若對(duì)于滿足|f(x1)﹣g(x2)|=2的x1 , x2 , 有|x1﹣x2|min= ,則f( )的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象向左平移 個(gè)單位后得到函數(shù)y=g(x)的圖象,若y=g(x)是偶函數(shù),則φ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin(2x﹣ )的圖象先向左平移 個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍(縱坐標(biāo)不變),那么所得圖象的解析式為y= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn).
(1)求證:直線AE⊥平面A1D1E;
(2)求二面角E﹣AD1﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F(0,1),點(diǎn)P在x軸上,點(diǎn)Q在y軸上, =2 , ⊥ ,當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)時(shí),點(diǎn)N的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)F的直線l交曲線C于A,B兩點(diǎn),且曲線C在A,B兩點(diǎn)處的切線相交于點(diǎn)M,若△MAB的三邊成等差數(shù)列,求此時(shí)點(diǎn)M到直線AB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 和 所圍成的封閉曲線,給定點(diǎn)A(0,a),若在此封閉曲線上恰有三對(duì)不同的點(diǎn),滿足每一對(duì)點(diǎn)關(guān)于點(diǎn)A對(duì)稱,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an},公差為2,的前n項(xiàng)和為Sn , 且a1 , S2 , S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AD=1,E為CD的中點(diǎn).
(1)求證:B1E⊥AD1
(2)若二面角A﹣B1E﹣A1的大小為30°,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com