某校高三年級一次數(shù)學(xué)考試之后,為了解學(xué)生的數(shù)學(xué)學(xué)習(xí)情況, 隨機抽取名學(xué)生的數(shù)學(xué)成績, 制成下表所示的頻率分布表.
(1)求,,的值;
(2)若從第三, 四, 五組中用分層抽樣方法抽取6名學(xué)生,并在這6名學(xué)生中隨機抽取2名與張老師面談,求第三組中至少有名學(xué)生與張老師面談的概率.
組號
 分組
頻數(shù)
頻率
第一組



第二組


 
第三組



第四組



第五組



合計


 
(1),;(2)0.8.

試題分析:(1)先由頻數(shù)與頻率及n的關(guān)系:,任選一組已知了頻數(shù)和頻率的就可求出n的值,進而再利用這個關(guān)系式就可求出a,b的值;(2)首先利用分層抽樣:即各層按相同比例計算出各組中應(yīng)抽取的樣本數(shù),顯然第三、四、五組分別抽取3、2、1名學(xué)生,并將這六名學(xué)生用不同的字母來表示,然后用樹圖寫出從中任抽兩名的所有不同的取法,數(shù)出總數(shù)并數(shù)出第三組中的三名學(xué)生沒有人抽取的種數(shù),從而就可求出第三組中沒有人與張老師面談的事件的概率,由于第三組中至少有名學(xué)生與張老師面談的事件與第三組中沒有人與 張老師面談的事件是對立事件,所以所求概率
試題解析:(1)依題意,得,
解得,,.           3分
(2)因為第三、四、五組共有60名學(xué)生,用分層抽樣方法抽取6名學(xué)生,
則第三、四、五組分別抽取名,名,名.   6分
第三組的名學(xué)生記為,第四組的名學(xué)生記為,第五組的名學(xué)生記為,
則從名學(xué)生中隨機抽取名,共有種不同取法,具體如下:,,,,,,,
,,,,.             8分
其中第三組的名學(xué)生沒有一名學(xué)生被抽取的情況共有種,具體如下:,.                                        10分
故第三組中至少有名學(xué)生與張老師面談的概率為.        12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試的數(shù)學(xué)成績,乙組記錄中有一個數(shù)字模糊,無法確認.假設(shè)這個數(shù)字具有隨機性,并在圖中以a表示.
(1)若甲、乙兩個小組的數(shù)學(xué)平均成績相同,求a的值;
(2)求乙組平均成績超過甲組平均成績的概率;
(3)當a=2時,分別從甲、乙兩組中各隨機選取一名同學(xué),設(shè)這兩名同學(xué)成績之差的絕對值為X,求隨機變量X的分布列和數(shù)學(xué)期望,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋中裝有8個大小質(zhì)地相同的球,其中4個紅球、4個白球,現(xiàn)從中任意取出四個球,設(shè)為取得紅球的個數(shù).
(1)求的分布列;
(2)若摸出4個都是紅球記5分,摸出3個紅球記4分,否則記2分.求得分的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

實驗測得四組(x,y)的值分別為(1,2),(2,3),(3,4),(4,4),則y與x間的線性回歸方程是( 。
A.y=-1+xB.y=1+xC.y=1.5+0.7xD.y=1+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為了檢驗?zāi)程籽劬Ρ=〔兕A(yù)防學(xué)生近視的作用,把500名做過該保健操的學(xué)生與另外500名未做該保健操的學(xué)生視力情況記錄作比較,提出假設(shè)H0:“這套眼睛保健操不能起到預(yù)防近視的作用”,利用2×2列聯(lián)表計算的K2≈3.918.經(jīng)查對臨界值表知P(K2≥3.841)=0.05.對此,四名同學(xué)做出了以下的判斷:
P:有95%的把握認為“這種眼睛保健操能起到預(yù)防近視的作用”;
q.若某人未做眼睛保健操,那么他有95%的可能性得近視;
r:這種眼睛保健操預(yù)防近視的有效率為95%;
s:這種眼睛保健操預(yù)防近視的有效率為5%,
則下列結(jié)論中,正確結(jié)論的序號是(  )
①p∧?q;②?p∧q;③(?p∧?q)∧(r∨s);④(p∨?r)∧(?q∨s).
A.①③B.②④C.①④D.都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一張方桌的圖案如圖所示,將一顆豆子隨機地扔到桌面上,假設(shè)豆子不落在線上,下列事件的概率:

(1)豆子落在紅色區(qū)域概率為
(2)豆子落在黃色區(qū)域概率為;
(3)豆子落在綠色區(qū)域概率為;
(4)豆子落在紅色或綠色區(qū)域概率為
(5)豆子落在黃色或綠色區(qū)域概率為.
其中正確的結(jié)論有(   )
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績,其中有一個數(shù)字被污損,則甲的平均成績超過乙的平均成績的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標劃分,指標大于或等于82為正品,小于82為次品.現(xiàn)隨機抽取這兩種元件各100個進行檢測,檢測結(jié)果統(tǒng)計如下:
測試
指標
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(1)試分別估計元件A,元件B為正品的概率;
(2)生產(chǎn)1個元件A,若是正品則盈利40元,若是次品則虧損5元;生產(chǎn)1個元件B,若是正品則盈利50元,若是次品則虧損10元.在(1)的前提下,
(ⅰ)X為生產(chǎn)1個元件A和1個元件B所得的總利潤,求隨機變量X的分布列和數(shù)學(xué)期望;
(ⅱ)求生產(chǎn)5個元件B所得利潤不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知甲盒中僅有1個球且為紅球,乙盒中有個紅球和個籃球,從乙盒中隨機抽取個球放入甲盒中.
(a)放入個球后,甲盒中含有紅球的個數(shù)記為;
(b)放入個球后,從甲盒中取1個球是紅球的概率記為.
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案