【題目】如圖,在直三棱柱中,BAC=90°,AB=AC=AA1=2,EBC中點(diǎn).

(Ⅰ)求證:A1B//平面AEC1

()在棱AA1上存在一點(diǎn)M,滿足,求平面MEC1與平面ABB1A1所成銳二面角的余弦值。

【答案】見解析;() .

【解析】試題分析: 連接于點(diǎn),連接,推導(dǎo)出,由此能證明平面; 為原點(diǎn), 軸, 軸, 軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成銳二面角的余弦值

解析:Ⅰ)證明:連接 O,連接EO.

因?yàn)?/span>為正方形,

所以O的中點(diǎn),

ECB的中點(diǎn),

所以EO的中位線,

,

平面, 平面

, 平面.

(Ⅱ)以點(diǎn)A為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,

,

設(shè) ,

所以 ,

,

,

設(shè)平面MEC1的法向量為,則

,

,

AC平面ABB1A1,取平面ABB1A1的法向量 ,

平面MEC1與平面ABB1A1所成銳二面角的余弦值 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且cosC=
(1)求B;
(2)設(shè)CM是角C的平分線,且CM=1,b=6,求cos∠BCM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小萌大學(xué)畢業(yè)后,家里給了她10萬(wàn)元,她想辦一個(gè)“萌萌”加工廠,根據(jù)市場(chǎng)調(diào)研,她得出了一組毛利潤(rùn)(單位:萬(wàn)元)與投入成本(單位:萬(wàn)元)的數(shù)據(jù)如下:

投入成本

0.5

1

2

3

4

5

6

毛利潤(rùn)

1.06

1.25

2

3.25

5

7.25

9.98

為了預(yù)測(cè)不同投入成本情況下的利潤(rùn),她想在兩個(gè)模型中選一個(gè)進(jìn)行預(yù)測(cè).

(1)根據(jù)投入成本2萬(wàn)元和4萬(wàn)元的兩組數(shù)據(jù)分別求出兩個(gè)模型的函數(shù)解析式,請(qǐng)你根據(jù)給定數(shù)據(jù)選出一個(gè)較好的函數(shù)模型進(jìn)行預(yù)測(cè)(不必說明理由),并預(yù)測(cè)她投入8萬(wàn)元時(shí)的毛利潤(rùn);

(2)若小萌準(zhǔn)備最少投入2萬(wàn)元開辦加工廠,請(qǐng)預(yù)測(cè)加工廠毛利潤(rùn)率的最大值,并說明理由.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=2px(p>0)焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),作AC,BD垂直拋物線的準(zhǔn)線l于C,D,其中O為坐標(biāo)原點(diǎn),則下列結(jié)論正確的是 . (填序號(hào))
;
②存在λ∈R,使得 成立;
=0;
④準(zhǔn)線l上任意一點(diǎn)M,都使得 >0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

討論的單調(diào)區(qū)間;

當(dāng)時(shí),上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣mx(m∈R).
(1)當(dāng)m=0時(shí),求函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(2)當(dāng)m≥0時(shí),求證:函數(shù)f(x)有且只有一個(gè)極值點(diǎn);
(3)當(dāng)b>a>0時(shí),總有 >1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中裝有標(biāo)號(hào)為,個(gè)小球,其中標(biāo)號(hào)的小球有個(gè),標(biāo)號(hào)的小球有個(gè),標(biāo)號(hào)的小球有個(gè),現(xiàn)從口袋中隨機(jī)摸出個(gè)小球.

)求摸出個(gè)小球標(biāo)號(hào)之和為偶數(shù)的概率.

)用表示摸出個(gè)小球的標(biāo)號(hào)之和,寫出的分布列,并求的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)yfx).對(duì)任意的a,b∈R.滿足:fa+b)=fafb),當(dāng)x>0時(shí),有fx)>1,其中f(1)=2.

(1)求f(0),f(﹣1)的值;

(2)判斷該函數(shù)的單調(diào)性,并證明;

(3)求不等式fx+1)<4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條不同直線、,兩個(gè)不同平面、,給出下列命題:

①若垂直于內(nèi)的兩條相交直線,則;

②若,則平行于內(nèi)的所有直線;

③若 , ,則;

④若 ,則;

⑤若 , ,則;

其中正確命題的序號(hào)是__________________.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案