已知
試求:
(1)sin2α的值;
(2)的值.
【答案】分析:(1)根據(jù)同角三角函數(shù)的關(guān)系,結(jié)合α為鈍角,可算出cosα的值,再結(jié)合二倍角的正弦公式,可得sin2α的值;
(2)根據(jù)商數(shù)關(guān)系,得到tanα的值,再用兩角和的正切公式,可算出的值.
解答:解(1)由,得cosα<0

因此,.     …(7分)
(2)由(1)知:
.…(14分)
點(diǎn)評(píng):本題給出一個(gè)鈍角α的正弦值,要我們求2α的正弦和的正切值,著重考查了同角三角函數(shù)的關(guān)系和二倍角的三角函數(shù)公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,F(xiàn)為橢圓的右焦點(diǎn),M,N兩點(diǎn)在橢圓C上,且
MF
FN
(λ>0)
,定點(diǎn)A(-4,0).
(1)若λ=1時(shí),有
AM
AN
=
106
3
,求橢圓C的方程;
(2)在條件(1)所確定的橢圓C下,當(dāng)動(dòng)直線MN斜率為k,且設(shè)s=1+3k2時(shí),試求
AM
AN
tan∠MAN
關(guān)于S的函數(shù)表達(dá)式f(s)的最大值,以及此時(shí)M,N兩點(diǎn)所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為
3
2
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍;
(3)過(guò)原點(diǎn)O任意作兩條互相垂直的直線與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR的一邊距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,x軸被拋物線C2:y=x2-b截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).
(1)求C1,C2的方程;
(2)設(shè)C2與y軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線l:y=kx與C2相交于A,B兩點(diǎn),直線MA,MB分別與C1相交于D,E.
①證明:
MD
ME
為定值;
②記△MDE的面積為S,試把S表示成k的函數(shù),并求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)到長(zhǎng)軸的兩個(gè)端點(diǎn)的距離分別為2+
3
和2-
3

(1)求橢圓的方程;
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)如圖,過(guò)原點(diǎn)O任意作兩條互相垂直的直線與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年北京市房山區(qū)良鄉(xiāng)中學(xué)高三數(shù)學(xué)會(huì)考模擬試卷(4)(解析版) 題型:解答題

已知點(diǎn)A(0,1),B,C是x軸上兩點(diǎn),且|BC|=6(B在C的左側(cè)).設(shè)△ABC的外接圓的圓心為M.
(Ⅰ)已知,試求直線AB的方程;
(Ⅱ)當(dāng)圓M與直線y=9相切時(shí),求圓M的方程;
(Ⅲ)設(shè)|AB|=l1,|AC|=l2,,試求s的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案