【答案】
分析:(I)根據(jù)曲線y=f(x)在A點(diǎn)處的切線方程是y=3x-3,建立關(guān)于a和b的方程組,解之即可;
(II)先求出函數(shù)g(x)的解析式,然后討論a的正負(fù),利用導(dǎo)數(shù)的符號研究函數(shù)的單調(diào)性,根據(jù)fˊ(x)>0和fˊ(x)<0求出函數(shù)g(x)的單調(diào)區(qū)間即可.
解答:解:(Ⅰ)∵f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/0.png)
(a≥0),
∴f'(x)=x
2+ax+1.(1分)
∵f(x)在(1,0)處切線方程為y=3x-3,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/1.png)
,(3分)
∴a=1,b=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/2.png)
.(各1分)(5分)
(Ⅱ)g(x)=e
-ax•f′(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/3.png)
,x∈R.
g'(x)=-x[ax+(a
2-2)e
-ax].(7分)
①當(dāng)a=0時(shí),g'(x)=2x,
x | (-∞,0) | 0 | (0,+∞) |
g'(x) | - | | + |
g(x) | 減函數(shù) | 極小值 | 增函數(shù) |
g(x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間(-∞,0).(9分)
②當(dāng)a>0時(shí),令g'(x)=0,得x=0或x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/4.png)
(10分)
(ⅰ)當(dāng)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/5.png)
>0,即0<a<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/6.png)
時(shí),
x | (-∞,0) | | (0, ) | ![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/8.png) | ( ,+∞) |
g'(x) | - | | + | | - |
g(x) | 減函數(shù) | 極小值 | 增函數(shù) | 極大值 | 減函數(shù) |
g(x)的單調(diào)遞增區(qū)間為(0,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/10.png)
),單調(diào)遞減區(qū)間(-∞,0),(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/11.png)
,+∞);(11分)
(ⅱ)當(dāng)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/12.png)
=0,即a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/13.png)
時(shí),g'(x)=-2x
2e
-2x≤0,
故g(x)在(-∞,+∞)單調(diào)遞減;(12分)
(ⅲ)當(dāng)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/14.png)
<0,即a>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/15.png)
時(shí),
x | (-∞, ) | ![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/17.png) | ( ,0) | | (0,+∞) |
g'(x) | - | | + | | - |
g(x) | 減函數(shù) | 極小值 | 增函數(shù) | 極大值 | 減函數(shù) |
g(x)在(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/19.png)
,0)上單調(diào)遞增,在(0,+∞),(-∞,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/20.png)
)上單調(diào)遞(13分)
綜上所述,當(dāng)a=0時(shí),g(x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間(-∞,0);
當(dāng)0<a<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/21.png)
時(shí),g(x)的單調(diào)遞增區(qū)間為(0,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/22.png)
),單調(diào)遞減區(qū)間為(-∞,0),
當(dāng)a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/23.png)
時(shí),g(x)的單調(diào)遞減區(qū)間為(-∞,+∞);
當(dāng)a>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/24.png)
時(shí),g(x)的單調(diào)遞增區(qū)間為(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/25.png)
,0),單調(diào)遞減區(qū)間為(0,+∞),(-∞,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183906485121472/SYS201310241839064851214017_DA/26.png)
).(“綜上所述”要求一定要寫出來)
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,同時(shí)考查分類討論的思想,計(jì)算能力,屬于中檔題.