【題目】已知邊長為的正的頂點在平面內(nèi),頂點,在平面外的同一側(cè),點,分別為在平面內(nèi)的投影,設(shè),直線與平面所成的角為.若是以角為直角的直角三角形,則的最小值為__________

【答案】

【解析】分析:由題意找出線面角,設(shè)BB′=a,CC′=b,可得ab=2,然后由a的變化得到A′B′的變化范圍,從而求得tanφ的范圍.

詳解:如圖,

由CC′⊥α,A′B′α,得A′B′⊥CC′,

又A′B′A′C′,且A′C′∩CC′=C′,

∴A′B′⊥面A′C′C,則φ=∠B′CA′,

設(shè)BB′=a,CC′=b,則A′B′2=4﹣a2,A′C′2=4﹣b2

設(shè)B′C′=c,

則有,整理得:ab=2.

∵|BB′|≤|CC′|,∴a≤b,

tanφ=,

在三角形BB′A′中,斜邊A′B為定值2,

當(dāng)a最大為時,A′B′取最小值,tanφ的最小值為

當(dāng)a減小時,tanφ增大,

若a1,則b2,在Rt△A′CC′中出現(xiàn)直角邊大于等于斜邊,矛盾,

∴a>1,此時A′B′,即tanφ

∴tanφ的范圍為的最小值為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 過點 ,左右焦點為F1(﹣c,0),F(xiàn)2(c,0),且橢圓C關(guān)于直線x=c對稱的圖形過坐標(biāo)原點.

(I)求橢圓C方程;
(II)圓D: 與橢圓C交于A,B兩點,R為線段AB上任一點,直線F1R交橢圓C于P,Q兩點,若AB為圓D的直徑,且直線F1R的斜率大于1,求|PF1||QF1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是(
A.[ ]
B.[ , ]
C.[ ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在區(qū)間內(nèi)任取兩個實數(shù),且,若不等式恒成立,則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點在點上方,直角頂點的坐標(biāo)為

(1)求邊上的高線所在直線的方程;

(2)求等腰直角三角形的外接圓的標(biāo)準(zhǔn)方程;

(3)分別求兩直角邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在道路邊安裝路燈,路面,燈柱高14,燈桿與地面所成角為30°.路燈采用錐形燈罩,燈罩軸線與燈桿垂直,軸線,燈桿都在燈柱和路面寬線確定的平面內(nèi).

(1)當(dāng)燈桿長度為多少時,燈罩軸線正好通過路面的中線?

(2)如果燈罩軸線AC正好通過路面的中線,此時有一高2.5 的警示牌直立在處,求警示牌在該路燈燈光下的影子長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某制造商月生產(chǎn)了一批乒乓球,隨機抽樣個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)分組如下表

分組

頻數(shù)

頻率

10

20

50

20

合計

100

(1)請在上表中補充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是)作為代表.據(jù)此估計這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C對應(yīng)的邊分別是ab,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

同步練習(xí)冊答案