分析 由題意可知,a≥0時(shí)不成立;可知a<0,然后分a≤-1和a∈(-1,0),利用導(dǎo)數(shù)求得最值得答案.
解答 解:當(dāng)a≥0時(shí),取x=1,則ax3+x2+x=a+2>2,lnx+$\frac{1}{x}$=1,不等式ax3+x2+x≤lnx+$\frac{1}{x}$在(0,+∞)上不恒成立,
∴a<0.
①當(dāng)a≤-1時(shí),ax3+x2+x≤-x3+x2+x,
令g(x)=-x3+x2+x,
g′(x)=-3x2+2x+1=-(3x+1)(x-1),
當(dāng)x∈(0,1)時(shí),g′(x)>0,g(x)為增函數(shù),當(dāng)x∈(1,+∞)時(shí),g′(x)<0,g(x)為減函數(shù),
∴g(x)在(0,+∞)上的極大值也是最大值為g(1)=1.
又f(x)=lnx+$\frac{1}{x}$,f′(x)=$\frac{1}{x}-\frac{1}{{x}^{2}}=\frac{x-1}{{x}^{2}}$,當(dāng)x∈(0,1)時(shí),f′(x)<0,f(x)為減函數(shù),當(dāng)x∈(1,+∞)時(shí),f′(x)>0,
f(x)為增函數(shù),
∴f(x)在(0,+∞)上的極小值也是最小值為f(1)=ln1+1=g(1).
∴f(x)≥g(x)在(0,+∞)上恒成立;
②當(dāng)a∈(-1,0)時(shí),取x=1,則ax3+x2+x=a+2>1,lnx+$\frac{1}{x}$=1,不等式ax3+x2+x≤lnx+$\frac{1}{x}$在(0,+∞)上不恒成立.
綜上,a≤-1.
故答案為:(-∞,-1].
點(diǎn)評(píng) 本題考查恒成立問題,考查了分類討論的數(shù)學(xué)思想方法,訓(xùn)練了利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | ±3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{9\sqrt{2}}}{8}π$ | B. | $\frac{{9\sqrt{2}}}{4}π$ | C. | $2\sqrt{3}π$ | D. | $3\sqrt{2}π$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com