如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,上,上.

(1)設(shè),求用表示的函數(shù)關(guān)系式;

(2)如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應在哪里?如果是參觀線路,則希望它最長,的位置又應在哪里?請說明理由.

 

【答案】

(1)(1≤≤2);(2)中線或中線時,最長.

【解析】

試題分析:(1)在△中,

,①      2分

又S△ADE S△ABC.②     3分

②代入①得-2(>0), ∴(1≤≤2)        4分.

(2)如果是水管y=,

當且僅當x2,即x=時“=”成立,故,且.      8分

如果是參觀線路,記2,可知函數(shù)在[1,]上遞減,

在[,2]上遞增,故max(1)=(2)=5.  ∴max.

中線或中線時,最長.     13分

考點:本題主要考查函數(shù)模型,均值定理的應用。

點評:中檔題,作為函數(shù)的應用問題,要遵循“審清題意,設(shè)出變量,列出等式,解答問題,作出結(jié)論”等步驟。求函數(shù)最值時,或利用導數(shù),或利用均值定理,應根據(jù)題目特點,靈活選擇方法。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x(x≥0),ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?請予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x,ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市雙流縣棠湖中學外語實驗學校高一(下)5月月考數(shù)學試卷(解析版) 題型:解答題

如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x(x≥0),ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?請予證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省濰坊市諸城一中高三(上)10月段考數(shù)學試卷(解析版) 題型:解答題

如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x(x≥0),ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?請予證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三第一次月考理科數(shù)學試卷 題型:解答題

如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.(Ⅰ)設(shè)AD=x(x0),ED=y,求用x表示y的函數(shù)關(guān)系式,并注明函數(shù)的定義域;

(Ⅱ)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?

如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?

 

 

請給予證明.

 

查看答案和解析>>

同步練習冊答案