已知向量
a
=(3-x,2),
b
=(1,2x),且
a
b
,則x=______.
∵向量
a
=(3-x,2),
b
=(1,2x),
又∵
a
b
,
a
b
=0,
即(3-x,2)•(1,2x)=3-x+4x=3+3x=0,
解得x=-1
故答案為-1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
cosx-
3
,sinx)
,
b
=(1+cosx,cosx)
,設(shè)f(x)=
a
b

(1)求f(x)的最小正周期;
(2)當(dāng)x∈[-
π
3
,
π
6
]
時(shí),求函數(shù)f(x)的值域;
(3)求f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
-
1
2
已知f(x)的最小正周期為π.
(1)求ω;
(2)求f(x)的單調(diào)區(qū)間;對稱軸方程;對稱中心坐標(biāo);
(3)當(dāng)0<x≤
π
3
時(shí),試求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
,2),
b
=(sin2ωx,-cos2ωx),(ω>0).
(1)若f(x)=
a
b
,且f(x)的最小正周期為π,求f(x)的最大值,并求f(x)取得最大值時(shí)x的集合;
(2)在(1)的條件下,f(x)沿向量
c
平移可得到函數(shù)y=2sin2x,求向量
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•花都區(qū)模擬)已知向量
a
=(3-x,2),
b
=(1,2x),且
a
b
,則x=
-1
-1

查看答案和解析>>

同步練習(xí)冊答案