已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上的一點(diǎn),其縱坐標(biāo)為,.
(1)求拋物線的方程;
(2)設(shè)為拋物線上不同于的兩點(diǎn),且,過兩點(diǎn)分別作拋物線的切線,記兩切線的交點(diǎn)為,求的最小值.
(1);(2).
【解析】
試題分析:(1)對于開口向上的拋物線來說,,代入坐標(biāo),解出;
(2)設(shè),利用導(dǎo)數(shù)的幾何意義,利用點(diǎn)斜式方程,分別設(shè)出過兩點(diǎn)的切線方程,然后求出交點(diǎn)的坐標(biāo),結(jié)合,所得到的關(guān)系式,設(shè),以及的坐標(biāo),將點(diǎn)的坐標(biāo)轉(zhuǎn)化為一個未知量表示的函數(shù),,用未知量表示,轉(zhuǎn)化為函數(shù)的最值問題,利用二次函數(shù)求最值的方法求出.中檔偏難題型.
試題解析:(1)由拋物線定義得: 2分
拋物線方程為 4分
(2)設(shè)且
即 6分
又處的切線的斜率為
處的切線方程為和
由得 8分
設(shè),由得
10分
當(dāng)時, 12分
考點(diǎn):1.拋物線的定義;2.導(dǎo)數(shù)的幾何意義;3.函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如下圖,在三棱錐中,底面,點(diǎn)為以為直徑的圓上任意一動點(diǎn),且,點(diǎn)是的中點(diǎn),且交于點(diǎn).
(1)求證:面;
(2)當(dāng)時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
復(fù)數(shù)滿足,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知是橢圓,上除頂點(diǎn)外的一點(diǎn),是橢圓的左焦點(diǎn),若 則點(diǎn)到該橢圓左焦點(diǎn)的距離為( )
A. B. C . D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知集合,,,則為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知是定義在[-1,1]上的奇函數(shù)且,當(dāng),且時,有,若對所有、恒成立,則實數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若,且,則的值為( )
A.或 B. C. D.或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
在軸的正方向上,從左向右依次取點(diǎn)列 ,以及在第一象限內(nèi)的拋物線上從左向右依次取點(diǎn)列,使()都是等邊三角形,其中是坐標(biāo)原點(diǎn),則第2005個等邊三角形的邊長是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省石家莊市畢業(yè)班第一次模擬考試數(shù)學(xué)理科數(shù)學(xué)試卷(解析版) 題型:解答題
在直角坐標(biāo)系中,曲線C1的參數(shù)方程為:(為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并取與直角坐標(biāo)系相同的長度單位,建立極坐標(biāo)系,曲線C2是極坐標(biāo)方程為:,
(1)求曲線C2的直角坐標(biāo)方程;
(2)若P,Q分別是曲線C1和C2上的任意一點(diǎn),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com