已知函數(shù)f(x)=cos2x+sinxcosx.
(Ⅰ)求f(x)的最小正周期和最小值;
(Ⅱ)若α∈(
π
4
,
π
2
)且f(α+
8
)=
2-
6
4
,求α的值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)利用二倍角的正弦、余弦公式、兩角和與差的正弦公式化簡函數(shù)解析式,化為一個角的正弦函數(shù),由正弦函數(shù)的最小值和周期公式求解;
(Ⅱ)將α+
8
代入f(x)化簡f(α+
8
)=
2-
6
4
,求出三角函數(shù)值,再由α范圍求出α+
8
得范圍,再求出α得值.
解答: 解:(Ⅰ)f(x)=cos2x+sinxcosx=
cos2x+1
2
+
1
2
sin2x

=
2
2
sin(2x+
π
4
)+
1
2

∴T=
2
f(x)min=-
2
2
+
1
2

∴f(x)的最小正周期和最小值是π、-
2
2
+
1
2
;
(Ⅱ)由(Ⅰ)得f(x)=
2
2
sin(2x+
π
4
)+
1
2
,
∴f(α+
8
)=
2
2
sin(2α+
4
+
π
4
)+
1
2
=-
2
2
sin2α+
1
2
=
2-
6
4
,
解得sin2α=
3
2
,
∵α∈(
π
4
π
2
),∴α+
8
∈(
8
,
8
),
∴2α=
3
,解得α=
π
3
,
故α的值是
π
3
點(diǎn)評:本題考查二倍角的正弦、余弦公式、兩角和與差的正弦公式,以及正弦函數(shù)的性質(zhì),熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

x(1-x)4-x3(1+3x)12的展開式中,含x4項(xiàng)的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面內(nèi)的兩條相交直線OP1和OP2將該平面分割成四個部分Ⅰ、Ⅱ、Ⅲ、Ⅳ
(不包含邊界),設(shè)
OP
=m
OP1
+n
OP2
,且點(diǎn)P落在第Ⅳ部分,則實(shí)數(shù)m、n滿足( 。
A、m>0,n>0
B、m>0,n<0
C、m<0,n>0
D、m<0,n<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且
b
a+b-c
=
a+c
a+b

(I)求角A;
(Ⅱ)若a=15,b=10,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,2),B(2,3),C(-2,5).
(1)求證:
AB
AC
;
(2)若向量
a
=(1,-2)可表示為
a
=m
AB
+n
AC
,求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,且過點(diǎn)(-
2
6
3
,1).
(1)求橢圓E的方程;
(2)過橢圓的右焦點(diǎn)F作兩條直線分別與橢圓交于A,C與B,D,若
AC
BD
=0,求四邊形ABCD面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
=(3,-4),
b
=(2,-
8
3
),
c
=(2,y),
a
c
,
(Ⅰ)計(jì)算:4
a
-3
b
;  
(Ⅱ)求向量
c
的坐標(biāo); 
(Ⅲ)求
b
c
夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)決定從甲、乙兩種產(chǎn)品中選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下(單位:萬美元):
年固定成本每件產(chǎn)品成本每件產(chǎn)品銷售價每年最多生產(chǎn)的件數(shù)
甲產(chǎn)品30a10200
乙產(chǎn)品50818120
其中年固定成本與生產(chǎn)的件數(shù)無關(guān),a為常數(shù),且4≤a≤8.另外年銷售x件乙產(chǎn)品時需上交0.05x2萬美元的特別關(guān)稅.
(1)寫出該廠分別投資生產(chǎn)甲、乙兩種產(chǎn)品的年利潤y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系式;
(2)分別求出投資生產(chǎn)這兩種產(chǎn)品的最大利潤;
(3)如何決定投資可獲得最大年利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,|φ|≤π),當(dāng)x=
π
6
時,y取最小值1;此函數(shù)的最小正周期為
3
,最大值為5.
(1)求出此函數(shù)的解析式;
(2)寫出此函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案