設
、
是不同的直線,
、
是不同的平面,則下列命題:
①若
,則
;②若
,則
;
③若
,則
;④若
,則
.
其中正確命題的個數(shù)是 ( )
試題分析:對①:
,有可能
;
對②:
時,
,
為
的斜線都有可能;
對③:
時,有可能
;對④顯然成立.所以選B
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在四棱錐
中,底面
是正方形,
與
交于點
底面
,
為
的中點.
(1)求證:
平面
;
(2)若
,在線段
上是否存在點
,使
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,三棱柱
的底面是邊長為
的正三角形,側棱垂直于底面,側棱長為
,D為棱
的中點。
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,
是圓的直徑,
垂直于圓所在的平面,
是圓上的點.
(1)求證:平面
平面
;
(2)若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,在圓錐PO中, PO=
,?O的直徑AB=2, C為弧AB的中點,D為AC的中點.
(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中,
,
,
,設頂點A在底面
上的射影為R.
(Ⅰ)求證:
;
(Ⅱ)設點
在棱
上,且
,試求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,正方體
中,
,點
為
的中點,點
在
上,若
,則線段
的長度等于
______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
對于平面
、
、
和直線
、
、
、
,下列命題中真命題是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知平面α,β,γ,直線l,m滿足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;②l⊥α;③β⊥γ;④α⊥β.
由上述條件可推出的結論有________(請將你認為正確的結論的序號都填上).
查看答案和解析>>