【題目】如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCD,,,,,異面直線PA和CD所成角等于60°.
(1)求直線PC和平面PAD所成角的正弦值的大小:
(2)在棱PA上是否存在一點E,使得二面角A-BE-D的余弦值為?若存在,指出點E在棱PA上的位置;若不存在,說明理由.
【答案】(1);(2)棱上是存在一點,使得二面角的余弦值為,此時.
【解析】
(1)先證明,,從而可建立如圖所示的空間直角坐標系,再利用及異面直線和所成角等于求出的坐標,求出平面的法向量后可求線面角的正弦值.
(2)設,從而可用表示的坐標,進而可用表示平面的法向量,最后利用給定的二面角的余弦值得到關于的方程,解出即可得到所求的的位置.
(1)因為底面,底面,故,同理.
又因為,故可建立如圖所示的空間直角坐標系,則,,
.
設,,其中,
則,,,
因為,故,所以,
所以,.
因為異面直線和所成角等于,
故,解得或(舍),
所以,,.
設平面的法向量為,
由可得,取,則,故.
又,設直線與平面所成的角為,
則.
(2)設,,則,所以.
又,,
設平面的法向量為,
由可得,取,則,
故.
又平面的法向量為,而二面角的余弦值為,
所以,解得或(舍),
所以棱上是存在一點,使得二面角的余弦值為,
此時.
科目:高中數學 來源: 題型:
【題目】在信息時代的今天,隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方法,某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了100人,他們年齡的頻數分布及對“使用微信交流”贊成的人數如下表:(注:年齡單位:歲)
年齡 | ||||||
頻數 | 10 | 30 | 30 | 20 | 5 | 5 |
贊成人數 | 9 | 25 | 24 | 9 | 2 | 1 |
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數據完成下面的列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過0.001的前提下認為“使用微信交流的態(tài)度與人的年齡有關”?
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(2)若從年齡在,調查的人中各隨機選取1人進行追蹤調查,求選中的2人中贊成“使用微信交流”的人數恰好為1人的概率.
0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當與連線的斜率為時,直線的傾斜角為
(1)求橢圓的標準方程;
(2)若是以為直徑的圓上的任意一點,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在邊長為4的正方形中,點E、F分別為邊的中點,以和為折痕把和折起,使點B、D重合于點P位置,連結,得到如圖所示的四棱錐.
(1)在線段上是否存在一點G,使與平面平行,若存在,求的值;若不存在,請說明理由
(2)求點A到平面的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“福”字、貼春聯(lián)、掛燈籠等方式來表達對新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動,顧客凡購物金額滿50元,則可以從“!弊、春聯(lián)和燈籠這三類禮品中任意免費領取一件,若有4名顧客都領取一件禮品,則他們中有且僅有2人領取的禮品種類相同的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著網絡的發(fā)展,網上購物越來越受到人們的喜愛,各大購物網站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網站2017年1-8月促銷費用(萬元)和產品銷量(萬件)的具體數據.
(1)根據數據繪制的散點圖能夠看出可用線性回歸模型擬合與的關系,請用相關系數加以說明;(系數精確到0.001)
(2)建立關于的回歸方程(系數精確到0.01);如果該公司計劃在9月份實現(xiàn)產品銷量超6萬件,預測至少需投入促銷費用多少萬元(結果精確到0.01).
參考數據: , , , , ,其中, 分別為第個月的促銷費用和產品銷量, .
參考公式:(1)樣本的相關系數
(2)對于一組數據, , , ,其回歸方程的斜率和截距的最小二乘估計分別為, .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com