(本小題滿分12分)如圖,五面體中, ,底面ABC是正三角形, =2.四邊形是矩形,二面角為直二面角,D為中點。
(I)證明:平面;
(II)求二面角的余弦值.
(1)根據(jù)中位線的性質(zhì),做輔助線得到,然后結(jié)合線面平行的判定定理得到結(jié)論。
(2)

試題分析:解:說明:由于建立空間直角坐標(biāo)系的多樣性,所以解法也具有多樣性,以下解法僅供參考。
(I)證明:連結(jié)連結(jié),

∵四邊形是矩形 ∴中點

∥平面,
(II)建立空間直角坐標(biāo)系如圖所示,
,,,
, 
所以
設(shè)為平面的法向量,
則有


,可得平面的一個
法向量為,              
而平面的法向量為,  
所以,
所以二面角的余弦值為
點評:解決立體幾何中的線面的位置關(guān)系的判定和二面角的問題,一般可以從兩個角度來得到,幾何性質(zhì)法,以及向量法得到,注意靈活的掌握,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m,n是兩條不重合的直線,是三個兩兩不重合的平面,給出下列四個命題:
①若m,m,則; ②若,
③若m//,n //,m//n 則// ④若m,m//,則
其中真命題是(   )
A.①和②B.①和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在邊長為2的正方體中,EBC的中點,F的中點

(1)求證:CF∥平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知球的面上有四點,平面,,
,則球的體積與表面積的比為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知一顆粒子等可能地落入如圖所示的四邊形ABCD內(nèi)的任意位置,如果通過大量的實驗發(fā)現(xiàn)粒子落入△BCD內(nèi)的頻率穩(wěn)定在附近,那么點A和點C到直線BD的距離之比約為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是棱長為1的正方體,四棱錐中,平面,

(Ⅰ)求證:
(Ⅱ)求直線與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正四棱錐S-ABCD的側(cè)棱長與底面邊長都相等,E是SB的中點,則AE,SD所成角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點,若EG//面ABCD.

(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
如圖,已知三棱錐OABC的側(cè)棱OAOB,OC兩兩垂直,且OA=2,OB=3,OC=4,EOC的中點.

(1)求異面直線BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.

查看答案和解析>>

同步練習(xí)冊答案