一塊邊長為10的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,試建立容器的容積的函數(shù)關(guān)系式,并求出函數(shù)的定義域.

 

 

 

解析:如圖,設(shè)所截等腰三角形的底邊邊長為.

 在中,   ,   

 所以,    于是     

依題意函數(shù)的定義域為 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側(cè)面制作一個正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,將y表為x的函數(shù);
(2)求y的最大值及此時x的值;
(3)在第(2)問的條件下,設(shè)F是CD的中點(diǎn),問是否存在這樣的動點(diǎn)P,它在此棱錐的表面(包含底面ABCD)運(yùn)動,且FP⊥AC.如果存在,在圖中畫出其軌跡并計算軌跡的長度,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側(cè)面制作一個正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,求y的最大值及y取最大值時的x的值;
(2)空間一動點(diǎn)P滿足
SP
=a
SA
+b
SB
+c
SC
(a+b+c=1),在第(1)問的條件下,求|
SP
|
的最小值,并求取得最小值時a,b,c的值;
(3)在第(1)問的條件下,設(shè)F是CD的中點(diǎn),問是否存在這樣的動點(diǎn)Q,它在此棱錐的表面(包含底面ABCD)運(yùn)動,且FQ⊥AC?如果存在,計算其運(yùn)動軌跡的長度,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省惠州市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題滿分14分)一塊邊長為10的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,試建立容器的容積的函數(shù)關(guān)系式,并求出函數(shù)的定義域.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市樹德中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側(cè)面制作一個正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,求y的最大值及y取最大值時的x的值;
(2)空間一動點(diǎn)P滿足(a+b+c=1),在第(1)問的條件下,求的最小值,并求取得最小值時a,b,c的值;
(3)在第(1)問的條件下,設(shè)F是CD的中點(diǎn),問是否存在這樣的動點(diǎn)Q,它在此棱錐的表面(包含底面ABCD)運(yùn)動,且FQ⊥AC?如果存在,計算其運(yùn)動軌跡的長度,如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案