曲線軸上的截距為                                  

A.―1                         B.1                           C.π                          D.―π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(x,y)在曲線C上,將此點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍,對(duì)應(yīng)的橫坐標(biāo)不變,得到的點(diǎn)滿足方程x2+y2=8;定點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l與曲線C交于A、B兩個(gè)不同點(diǎn).
(1)求曲線C的方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓M:x2+y2=8,將曲線上每一點(diǎn)的縱坐標(biāo)壓縮到原來的
12
,對(duì)應(yīng)的橫坐標(biāo)不變,得到曲線C.經(jīng)過點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個(gè)不同點(diǎn).
(1)求曲線C的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知曲線y=x3-6x2+11x-6.在它對(duì)應(yīng)于x∈[0,2]的弧段上求一點(diǎn)P,使得曲線在該點(diǎn)的切線在y軸上的截距為最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x在點(diǎn)(1,-1)處的切線在y軸上的截距為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案