已知f′(x)是f(x)的導(dǎo)函數(shù)且f′(x)的圖象如圖所示,則f(x)的圖象只可能是( 。
分析:根據(jù)導(dǎo)函數(shù)的圖象和函數(shù)單調(diào)性之間的關(guān)系,如導(dǎo)函數(shù)的圖象在x軸上方,則原函數(shù)在該區(qū)間上是增函數(shù),如導(dǎo)函數(shù)的圖象在x軸下方,則原函數(shù)在該區(qū)間上是減函數(shù),再結(jié)合函數(shù)在區(qū)間[a,b]上的變化率情況,由y=f′(x)的圖象得函數(shù)y=f(x)的圖象.
解答:解:由導(dǎo)函數(shù)f′(x)的圖象可知,
f′(x)在x∈[a,b]上恒大于零,由函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系可以知道,
函數(shù)f(x)在x∈[a,b]上單調(diào)遞增,
另一方面,由導(dǎo)函數(shù)f′(x)的圖象可以看出,
導(dǎo)函數(shù)在區(qū)間[a,b]的端點處取得最大值,
從而原函數(shù)在區(qū)間[a,b]的端點處的變化率最大,原函數(shù)在區(qū)間[a,b]的端點附近的圖象越陡,中間較平穩(wěn),
結(jié)合選項可知選C.
故選D.
點評:考查導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系,導(dǎo)數(shù)f′(x)≥0,函數(shù)f(x)在該區(qū)間上是增函數(shù);導(dǎo)數(shù)f′(x)≤0,函數(shù)f(x)在該區(qū)間上是減函數(shù),以及識圖能力,體現(xiàn)了數(shù)形結(jié)合的思想,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x+
π
2
)
是偶函數(shù),給出下列四個結(jié)論:
①f(x)是周期函數(shù);
②x=π是f(x)圖象的一條對稱軸;
③(-π,0)是f(x)圖象的一個對稱中心;
④當(dāng)x=
π
2
時,f(x)一定取最大值.
其中正確的結(jié)論的代號是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,且偶函數(shù)f(x)滿足f(2x-1)<f(
13
)
,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,且偶函數(shù)f(x)滿足f(2x-1)<f(
1
3
)
,則x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的可導(dǎo)函數(shù),對任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,則f(2)與f(e)•ln2的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是定義在R上的可導(dǎo)函數(shù),對任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,則f(2)與f(e)•ln2的大小關(guān)系是( 。
A.f(2)>f(e)•ln2B.f(2)=f(e)•ln2C.f(2)<f(e)•ln2D.不能確定

查看答案和解析>>

同步練習(xí)冊答案