證明(sinα-cosα)2+sin2α=1.
【答案】分析:利用完全平方式分解,根據(jù)同角三角函數(shù)關系和二倍角公式逆用,得到要求結(jié)果,等式的證明有幾種表達形式,從左邊推到右邊是最基本的推導過程.
解答:證:左邊=sin2α-2sinαcosα+cos2α+2sinαcosα.
=sin2α+cos2α=1.
∴左邊=右邊.
點評:證明三角恒等式的方法:(1)遵循化繁為簡的原則,可以從“左邊右邊”,或從“右邊左邊”.(2)依據(jù)“等于同量的兩個量相等”證明左、右兩邊等于同一個式子.(3)依據(jù)等價轉(zhuǎn)化思想,證明與原式等價的另一個式子成立,從而推出原式成立.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市高三(上)學情調(diào)研數(shù)學試卷(二)(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市金陵中學高三(上)學情調(diào)研數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市高三(上)學情調(diào)研數(shù)學試卷(二)(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

同步練習冊答案