【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20161月至201812月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,判斷下列結(jié)論:

1)月接待游客量逐月增加;

2)年接待游客量逐年增加;

3)各年的月接待游客量高峰期大致在78月;

4)各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn).

其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

【答案】C

【解析】

由題圖可知逐一分析即可,這三年8月到9月的月接待游客量在減少,則結(jié)論(1)錯(cuò)誤,(2)(3)(4)正確.

由題圖可知,這三年8月到9月的月接待游客量在減少,則結(jié)論(1)錯(cuò)誤;

年接待游客數(shù)量逐年增加,故(2)正確;

各年的月接待游客量高峰期大致在7,8月,故(3)正確;

各年1月至6月的月接待游客量相對(duì)變化較小,而7月至12月則變化較大,故(4)正確;

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個(gè)極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若數(shù)列滿足所有的項(xiàng)均由1構(gòu)成且其中個(gè),1個(gè),則稱為“數(shù)列”.

1,,為“數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?

2,為“數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得,且的概率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B為橢圓C短軸的上、下頂點(diǎn),P為直線ly2上一動(dòng)點(diǎn),連接PA并延長(zhǎng)交橢圓于點(diǎn)M,連接PB交橢圓于點(diǎn)N,已知直線MA,MB的斜率之積恒為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若直線MNx軸平行,求直線MN的方程;

3)求四邊形AMBN面積的最大值,并求對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠為了研究印刷單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表.

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,方程甲:,方程乙:.

1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

i)完成下表(計(jì)算結(jié)果精確到0.1);

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

ii)分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較,的大小,判斷哪個(gè)模型擬合效果更好.

2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為10千冊(cè),若印刷廠以每?jī)?cè)5元的價(jià)格將書籍出售給訂貨商,試估計(jì)印刷廠二次印刷獲得的利潤(rùn).(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為.

1)求的值;

2)試推斷方程是否有實(shí)數(shù)解?若有實(shí)數(shù)解,請(qǐng)求出它的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國在北宋1084年第一次印刷出版了《算經(jīng)十書》,即賈憲的《黃帝九章算法細(xì)草》,劉益的《議古根源》,秦九韶的《數(shù)書九章》,李冶的《測(cè)圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學(xué)啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達(dá)到古代數(shù)學(xué)的高峰,其中一些算法如開立方和開四次方也是當(dāng)時(shí)世界數(shù)學(xué)的高峰.某圖書館中正好有這十本書現(xiàn)在小明同學(xué)從這十本書中任借兩本閱讀,那么他取到的書的書名中有字的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四棱錐中,底面為等腰梯形,,,,,點(diǎn)在底面的投影恰好為的交點(diǎn),.

1)證明:

2)若的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時(shí)間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當(dāng)發(fā)車時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

查看答案和解析>>

同步練習(xí)冊(cè)答案