【題目】“現(xiàn)代五項(xiàng)”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運(yùn)動項(xiàng)目,包含射擊、擊劍、游泳、馬術(shù)和越野五項(xiàng)運(yùn)動.規(guī)定每一項(xiàng)運(yùn)動的前三名得分都分別為,,(,且),每位選手各項(xiàng)得分之和為最終得分.在一次比賽中,只有甲、乙、丙三人參加“現(xiàn)代五項(xiàng)”,甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名.則:__________,游泳比賽的第三名是__________.
【答案】 5 乙
【解析】分析:甲最終得分,乙和丙最值各得分,得 ,即每個項(xiàng)目三個名次總分是分,每個項(xiàng)目三個名次的分值情況只有兩種:①分、分、分;②分、分、分,在各種情況下,對甲乙丙的得分合理性一一判定即可.
詳解:甲最終得分,乙和丙最值各得分,
,
即每個項(xiàng)目三個各次總分是分,
每個項(xiàng)目三個各次的分值情況只有兩種:①分、分、分;②分、分、分,
對于情況②分、分、分,五場比賽甲不可能得分,不合題意;
只能情況①分、分、分符合題意,所以,
因?yàn)橐业鸟R術(shù)比賽獲得第一名,分,余下四個項(xiàng)目共得分,只能是四個第三名;
余下四個第一名,若甲得三個第一名,分,還有兩個項(xiàng)目得分不可能,
故甲必須得四個第一名,一個第二名,
余下一個馬術(shù)第三名,四個第二名剛好符合丙得分,
由此可得游泳比賽的第三名是乙,
故答案為 , 乙.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃?xì)夤艿?已知小區(qū)某處三幢房屋分別位于扇形的三個頂點(diǎn)上,點(diǎn)是弧的中點(diǎn),現(xiàn)欲在線段上找一處開挖工作坑(不與點(diǎn),重合),為鋪設(shè)三條地下天燃?xì)夤芫,,,已知米,,記,該三條地下天燃?xì)夤芫的總長度為米.
(1)將表示成的函數(shù),并寫出的范圍;
(2)請確定工作坑的位置,使此處地下天燃?xì)夤芫的總長度最小,并求出總長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)如圖,三角形所在的平面與長方形所在的平面垂直,,,.
(1)證明:平面;
(2)證明:;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,以短軸端點(diǎn)和焦點(diǎn)為頂點(diǎn)的四邊形的周長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及焦點(diǎn)坐標(biāo).
(Ⅱ)過橢圓的右焦點(diǎn)作軸的垂線,交橢圓于、兩點(diǎn),過橢圓上不同于點(diǎn)、的任意一點(diǎn),作直線、分別交軸于、兩點(diǎn).證明:點(diǎn)、的橫坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入春天,大氣流動性變好,空氣質(zhì)量隨之提高,自然風(fēng)光越來越美,自駕游鄉(xiāng)村游也就越來越熱.某旅游景區(qū)試圖探究車流量與景區(qū)接待能力的相關(guān)性,確保服務(wù)質(zhì)量和游客安全,以便于確定是否對進(jìn)入景區(qū)車輛實(shí)施限行.為此,該景區(qū)采集到過去一周內(nèi)某時段車流量與接待能力指數(shù)的數(shù)據(jù)如表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
車流量(x千輛) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
接待能力指數(shù)y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(I)根據(jù)表中周一到周五的數(shù)據(jù),求y關(guān)于x的線性回歸方程.
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2,則認(rèn)為該線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?
附參考公式及參考數(shù)據(jù):線性回歸方程,其中;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.
(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機(jī)抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;
(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識,某中學(xué)高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:
序號 | 分組(分?jǐn)?shù)) | 組中值 | 頻數(shù)(人數(shù)) | 頻率 |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格;
(2)規(guī)定成績不低于85分的同學(xué)能獲獎,請估計(jì)在參加的800名學(xué)生中大概有多少名同學(xué)獲獎?
(3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com