已知函數(shù).
(Ⅰ)求函數(shù)的最小正周期及最小值;
(Ⅱ)若,且,求的值.
(Ⅰ),;(Ⅱ)或.
解析試題分析:(Ⅰ)先由三角函數(shù)的差角公式、和角公式以及二倍角公式將所給函數(shù)化簡整理得到:,再由求函數(shù)的最小正周期,根據(jù)三角函數(shù)的圖像與性質(zhì)求函數(shù)的最小值;(Ⅱ)先將代入函數(shù),根據(jù)求得,先判斷的取值范圍,在結(jié)合三角函數(shù)的圖像與性質(zhì)判斷時,對應的的取值,然后解方程求未知數(shù).
試題解析:
. 4分
(Ⅰ)函數(shù)的最小正周期為,
函數(shù)的最小值為. 6分
(Ⅱ)由得.
所以. 8分
又因為,所以, 10分
所以或.
所以或. 13分
考點:1.和角公式與差角公式;2.二倍角公式;3.三角函數(shù)的圖像與性質(zhì);4.三角函數(shù)的最小正周期
科目:高中數(shù)學 來源: 題型:解答題
設(shè)△ABC的三邊a,b,c所對的角分別為A,B,C,
(Ⅰ)求A的值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)求的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角A,B,C的對邊分別為,已知,成等差數(shù)列,且,求邊的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)>0,>0,<的圖像與軸的交點為(0,1),它在軸右側(cè)的第一個最高點和第一個最低點的坐標分別為和
(1)求的解析式及的值;
(2)若銳角滿足,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com