(13分) 已知數(shù)列{}的前n項(xiàng)和Sn=-+2(n為正整數(shù)).

 (1)令,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;

  (2)令,若Tn=c1+c2+…+cn, 求Tn。

 

【答案】

 

1)在中,令,可得,即,當(dāng)時(shí), ,

,即 ,即當(dāng)時(shí),

,數(shù)列是首項(xiàng)和公差均為1的等差數(shù)列.∴ 

   (2)由(1)得,∴, ①

,    ②

由①--②得

,

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年安徽省滁州中學(xué)高一下學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分13分)
已知數(shù)列,其前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式,并證明數(shù)列是等差數(shù)列;
(2)如果數(shù)列滿足,請(qǐng)證明數(shù)列是等比數(shù)列;
(3)設(shè),數(shù)列的前項(xiàng)和為,求使不等式對(duì)一切都成立的最大正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆福建省廈門(mén)外國(guó)語(yǔ)學(xué)校高三上學(xué)期11月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分13分)已知數(shù)列,定義其倒均數(shù)是
(1)求數(shù)列{}的倒均數(shù)是,求數(shù)列{}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列的首項(xiàng)為-1,公比為,其倒數(shù)均為,若存在正整數(shù)k,使恒成立,試求k的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市西城區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題滿分13分)已知數(shù)列.如果數(shù)列滿足,,其中,則稱(chēng)的“衍生數(shù)列”.

(Ⅰ)若數(shù)列的“衍生數(shù)列”是,求;

(Ⅱ)若為偶數(shù),且的“衍生數(shù)列”是,證明:的“衍生數(shù)列”是;

(Ⅲ)若為奇數(shù),且的“衍生數(shù)列”是的“衍生數(shù)列”是,….依次將數(shù)列,,,…的第項(xiàng)取出,構(gòu)成數(shù)列.證明:是等差數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市西城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷 題型:解答題

(本小題滿分13分)已知數(shù)列.如果數(shù)列滿足,,其中,則稱(chēng)的“衍生數(shù)列”.

(Ⅰ)寫(xiě)出數(shù)列的“衍生數(shù)列”;

(Ⅱ)若為偶數(shù),且的“衍生數(shù)列”是,證明:;

(Ⅲ)若為奇數(shù),且的“衍生數(shù)列”是,的“衍生數(shù)列”是,….依次將數(shù)

,,…的首項(xiàng)取出,構(gòu)成數(shù)列.證明:是等差數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年安徽省高一下學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分13分)

已知數(shù)列,其前項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式,并證明數(shù)列是等差數(shù)列;

(2)如果數(shù)列滿足,請(qǐng)證明數(shù)列是等比數(shù)列;

(3)設(shè),數(shù)列的前項(xiàng)和為,求使不等式 對(duì)一切都成立的最大正整數(shù)的值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案