【題目】在三棱錐PABC中,平面PBC⊥平面ABC,∠ACB90°,BCPC2,若ACPB,則三棱錐PABC體積的最大值為(

A.B.C.D.

【答案】D

【解析】

PB中點(diǎn)M,連結(jié)CM,得到AC⊥平面PBC,設(shè)點(diǎn)A到平面PBC的距離為hAC2x,則CMPB,求出VAPBC,設(shè)t,(0t2),從而VAPBC,(0t2),利用導(dǎo)數(shù)求出三棱錐PABC體積的最大值.

解:如圖,取PB中點(diǎn)M,連結(jié)CM,

∵平面PBC⊥平面ABC,平面PBC平面ABCBC,AC平面ABC,ACBC,

AC⊥平面PBC

設(shè)點(diǎn)A到平面PBC的距離為hAC2x,

PCBC2,PB2x,(0x2),MPB的中點(diǎn),

CMPB,CM

解得,

所以VAPBC,

設(shè)t,(0t2),則x24t2,

VAPBC,(0t2),

關(guān)于t求導(dǎo),得

所以函數(shù)在單調(diào)遞增,在單調(diào)遞減.

所以當(dāng)t時(shí),(VAPBCmax.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,橢圓上的點(diǎn)到其左焦點(diǎn)的最大距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線,過點(diǎn)作直線的垂線與直線交于點(diǎn),求的最小值和此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國(guó)古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國(guó)現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會(huì)發(fā)現(xiàn)塔的高度正好跟此對(duì)角線長(zhǎng)度相等.以塔底座的邊作方形.作方圓圖,會(huì)發(fā)現(xiàn)方圓的切點(diǎn)正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測(cè)量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點(diǎn)的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線過點(diǎn)且漸近線為,則下列結(jié)論錯(cuò)誤的是(

A.曲線的方程為

B.左焦點(diǎn)到一條漸近線距離為;

C.直線與曲線有兩個(gè)公共點(diǎn);

D.過右焦點(diǎn)截雙曲線所得弦長(zhǎng)為的直線只有三條;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,側(cè)面PAD⊥底面ABCDEPA的中點(diǎn),過CD,E三點(diǎn)的平面與PB交于點(diǎn)F,且PA=PD=AB=2.

1)證明:;

2)若四棱錐的體積為,則在線段上是否存在點(diǎn)G,使得二面角的余弦值為?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構(gòu)造如圖所示,在一個(gè)十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個(gè)固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動(dòng),在直尺上的點(diǎn)M處用套管裝上鉛筆,使直尺轉(zhuǎn)動(dòng)一周,則點(diǎn)M的軌跡C是一個(gè)橢圓,其中|MA|2,|MB|1,如圖,以兩條導(dǎo)槽的交點(diǎn)為原點(diǎn)O,橫槽所在直線為x軸,建立直角坐標(biāo)系.

1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ0≤φ),用表示點(diǎn)M的坐標(biāo),并求出C的普通方程;

2)已知過C的左焦點(diǎn)F,且傾斜角為α0≤α)的直線l1C交于D,E兩點(diǎn),過點(diǎn)F且垂直于l1的直線l2C交于G,H兩點(diǎn).當(dāng)|GH|,依次成等差數(shù)列時(shí),求直線l2的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)若對(duì)任意恒成立,求的取值集合;

2)設(shè),點(diǎn),點(diǎn),直線的斜率為求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓左、右焦點(diǎn)分別為,,離心率為,兩準(zhǔn)線間距離為8,圓O的直徑為,直線l與圓O相切于第四象限點(diǎn)T,與y軸交于M點(diǎn),與橢圓C交于點(diǎn)NN點(diǎn)在T點(diǎn)上方),且

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)求直線l的方程;

3)求直線l上滿足到,距離之和為的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案