如圖,三次函數(shù)y=ax3+bx2+cx+d的零點為-1,1,2,則該函數(shù)的單調(diào)減區(qū)間為
[
2-
7
3
,
2+
7
3
]
[
2-
7
3
2+
7
3
]
分析:根據(jù)函數(shù)y=ax3+bx2+cx+d的零點為-1,1,2,建立函數(shù)關(guān)系式,從而求出函數(shù)y的解析式,最后解不等式y(tǒng)′(x)<0即可求出函數(shù)的單調(diào)減區(qū)間.
解答:解:∵函數(shù)y=ax3+bx2+cx+d的零點為-1,1,2,如圖,
得y=a(x+1)(x-1)(x-2),且a>0,
y=a(x3-2x2-x+2),y'(x)=a(3x2-4x-1)=3a(x-
2-
7
3
)(x-
2+
7
3
),
令y′≤0得x∈[
2-
7
3
2+
7
3
]

則該函數(shù)的單調(diào)減區(qū)間為 [
2-
7
3
,
2+
7
3
]

故答案為:[
2-
7
3
2+
7
3
]
點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,以及利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)性等基礎(chǔ)題知識,考查運算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、設(shè)f(x)是一個三次函數(shù),f′(x)為其導(dǎo)函數(shù),如圖所示的是y=x•f′(x)的圖象的一部分,則f(x)的極大值與極小值分別是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)三次函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),函數(shù)y=x•f′(x)的圖象的一部分如圖所示,則正確的是( 。
A、f(x)的極大值為f(
3
)
,極小值為f(-
3
)
B、f(x)的極大值為f(-
3
)
,極小值為f(
3
)
C、f(x)的極大值為f(-3),極小值為f(3)
D、f(x)的極大值為f(3),極小值為f(-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖已知O為坐標(biāo)原點,∠AOB=30°,∠ABO=90°,且點A的坐標(biāo)為(2,0).
(1)求點B的坐標(biāo);
(2)若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、B、O 三點,求此二次函數(shù)的解析式;                             
(3)在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三暑期教學(xué)質(zhì)量檢測文科數(shù)學(xué) 題型:選擇題

設(shè)f(x)是一個三次函數(shù),f′(x)為其導(dǎo)函數(shù),如圖所示的是yx·f′(x)的圖象的一部分,則f(x)的極大值與極小值分別是

 

A.f(1)與f(-1)      B.f(-1)與f(1)  C.f(-2)與f(2)     D.f(2)與f(-2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽市揭東縣云路中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)三次函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),函數(shù)y=x•f′(x)的圖象的一部分如圖所示,則正確的是( )
A.f(x)的極大值為,極小值為
B.f(x)的極大值為,極小值為
C.f(x)的極大值為f(-3),極小值為f(3)
D.f(x)的極大值為f(3),極小值為f(-3)

查看答案和解析>>

同步練習(xí)冊答案