不等式在[-1,1]上恒成立,]則a的取值范圍是    
【答案】分析:本題只要根據(jù)條件分別作函數(shù)和y=x+a的圖象,利用數(shù)形結(jié)合即可解決.
解答:解:分別作函數(shù)和y=x+a的圖象如右
前者是以原點(diǎn)為圓心的單位圓的上半部分,后者是斜率為1的直線.
不等式的解即半圓在直線的下方的點(diǎn)的橫坐標(biāo);
不等式恒成立即半圓都在直線的下方
由圖可見,只需直線在與圓相切的位置的上方,即
則a的取值范圍是
點(diǎn)評:本題考查直線與圓的位置關(guān)系以及不等式的應(yīng)用,主要利用數(shù)形結(jié)合思想解此類恒成立問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f (1)=1,若m,n∈[-1,1],m+n≠0時(shí)有
f(m)+f(n)
m+n
>0.
(1)判斷f (x)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:f(x+
1
2
)<f(
1
x-1
);
(3)若f(x)≤t2-2at+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1,+∞)上的函數(shù)f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
.給出下列結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,4];
②關(guān)于x的方程f(x)=(
1
2
)
n
(n∈N*)
有2n+4個不相等的實(shí)數(shù)根;
③當(dāng)x∈[2n-1,2n](n∈N*)時(shí),函數(shù)f(x)的圖象與x軸圍成的圖形面積為S,則S=2;
④存在x0∈[1,8],使得不等式x0f(x0)>6成立,
其中你認(rèn)為正確的所有結(jié)論的序號為
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
x2+1
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

(1)確定函數(shù)f(x)的解析式;
(2)當(dāng)x∈(-1,1)時(shí)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(-1)=1,若對任意a、b∈[-1,1],a+b≠0,都有
f(a)+f(b)a+b
<0.
(1)判斷f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)解不等式f(1-x)+f(1-x2)>0;
(3)若f(x)≤m2-2am+1對所有x[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)已知定義在[-1,1]上的奇函數(shù)f(x),在x∈(0,1]時(shí),f(x)=
2x4x+1

(1)當(dāng)x∈[-1,1]時(shí),求f(x)的解析式;
(2)設(shè)g(x)=-2x•f(x)(-1<x<0),求函數(shù)y=g(x)的值域;
(3)若關(guān)于x的不等式λf(x)<1在x∈(0,1]上有解,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案