從1,2,3,4,5中任取3個(gè)數(shù)字組成沒有重復(fù)數(shù)字的三位數(shù),共有個(gè)數(shù)是(  )
A、10B、20C、30D、60
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問題
專題:排列組合
分析:根據(jù)分步計(jì)數(shù)原理計(jì)數(shù)即可.
解答: 解:從1,2,3,4,5中任取3個(gè)數(shù)字組成沒有重復(fù)數(shù)字的三位數(shù),共有個(gè)數(shù)是
A
3
5
=60.
故選:D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是排列組合及簡(jiǎn)單計(jì)數(shù)問題,其中分析解決問題需要多少步驟,每個(gè)步驟分別有幾種情況是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x≥0
y≥0
2x+y-2≤0
,則z=x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-x-1(x≤0)
log
1
2
x
(x>0)
,若f(x0)>1,則x0的取值范圍是( 。
A、(-1,1)
B、(-∞,-1)
C、(-∞,-1)∪(
1
2
,+∞)
D、(-∞,-1)∪(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)(x∈R)的圖象上任一點(diǎn)(x0,y0)處的切線方程為y-y0=(x0-1)(1-lnx0)(x-x0),那么函數(shù)f(x)的單調(diào)減區(qū)間是(  )
A、(1,e)
B、(-∞,1)∪(e,+∞)
C、(0,1)∪(e,+∞)
D、(0,1)和(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,0),
b
=(0,-1),
c
=k2
a
+k
b
(k≠0),
d
=
a
+
b
,如果
c
d
,那么(  )
A、k=1且
c
d
同向
B、k=1且
c
d
反向
C、k=-1且
c
d
同向
D、k=-1且
c
d
反向

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高二年級(jí)計(jì)劃從3名男生和4名女生中選3人參加某項(xiàng)會(huì)議,則選出的3人中既有男生又有女生的選法種數(shù)為( 。
A、24B、30C、60D、90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,2]內(nèi)隨機(jī)取一個(gè)數(shù)a,則使得函數(shù)f(x)=
1
3
x3-
1
2
ax2-2a2x+
10
3
有三個(gè)零點(diǎn)的概率為( 。
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)i(i+1)的虛部為(  )
A、-1B、1
C、iD、i2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在(
x
+
3x
n(其中n<15)的展開式中:
(1)求二項(xiàng)式展開式中各項(xiàng)系數(shù)之和;
(2)若展開式中第9項(xiàng),第10項(xiàng),第11項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求n的值;
(3)在(2)的條件下寫出它展開式中的有理項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案