【題目】已知函數(shù).
(1)設,求函數(shù)的單調(diào)增區(qū)間;
(2)設,求證:存在唯一的,使得函數(shù)的圖象在點處的切線l與函數(shù)的圖象也相切;
(3)求證:對任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.
【答案】(1)的單調(diào)增區(qū)間為(0,];(2)證明見解析;(3)證明見解析.
【解析】
(1)求出導函數(shù),在函數(shù)定義域內(nèi)由確定其增區(qū)間;
(2)先求出在處的切線方程,設這條切線與的圖象切于點,由,得出關于的方程,然后證明此方程的解在上存在且唯一.
(3)把問題轉(zhuǎn)化為在上有解,令,則只要即可.
(1)h(x)=g(x)﹣x2=lnx﹣x2,x∈(0,+∞).
令,
解得.
∴函數(shù)h(x)的單調(diào)增區(qū)間為(0,].
(2)證明:設x0>1,,可得切線斜率,
切線方程為:.
假設此切線與曲線y=f(x)=ex相切于點B(x1,),f′(x)=ex.
則k=,
∴.
化為:x0lnx0﹣lnx0﹣x0-1=0,x0>1.
下面證明此方程在(1,+∞)上存在唯一解.
令u(x0)=x0lnx0﹣lnx0﹣x0-1,x0>1.
,在x0∈(1,+∞)上單調(diào)遞增.
又u′(1)=-1,,
∴在上有唯一實數(shù)解,
,,遞減,
時,,遞增,
而,∴在上無解,
而,∴在上有唯一解.
∴方程在(1,+∞)上存在唯一解.
即:存在唯一的x0,使得函數(shù)y=g(x)的圖象在點A(x0,g(x0))處的切線l與函數(shù)y=f(x)的圖象也相切.
(3)證明:,
令v(x)=ex﹣x﹣1,x>0.
∴v′(x)=ex﹣1>0,
∴函數(shù)v(x)在x∈(0,+∞)上單調(diào)遞增,
∴v(x)>v(0)=0.
∴,
∴不等式,a>0ex﹣x﹣1﹣ax<0,
即H(x)=ex﹣x﹣1﹣ax<0,
由對任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立H(x)min<0.
H(x)=ex﹣x﹣1﹣ax,a,x∈(0,+∞).
H′(x)=ex﹣1﹣a,令ex﹣1﹣a=0,
解得x=>0,
函數(shù)H(x)在區(qū)間(0,)上單調(diào)遞減,在區(qū)間(,+∞)上單調(diào)遞增.
∵H(0)=0,∴.
∴存在對任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線(為參數(shù)),曲線(為參數(shù)).
(1)設與相交于兩點,求;
(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年的月日是全國愛牙日,為了迎接這一節(jié)日,某地區(qū)衛(wèi)生部門成立了調(diào)查小組,調(diào)查“常吃零食與患齲齒的關系”,對該地區(qū)小學六年級名學生進行檢查,按患齲齒的不患齲齒分類,得匯總數(shù)據(jù):不常吃零食且不患齲齒的學生有名,常吃零食但不患齲齒的學生有名,不常吃零食但患齲齒的學生有名.
(1)完成答卷中的列聯(lián)表,問:能否在犯錯率不超過的前提下,認為該地區(qū)學生的常吃零食與患齲齒有關系?
(2)名區(qū)衛(wèi)生部門的工作人員隨機分成兩組,每組人,一組負責數(shù)據(jù)收集,另一組負責數(shù)據(jù)處理,求工作人員甲分到負責收集數(shù)據(jù)組,工作人員乙分到負責數(shù)據(jù)處理組的概率.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知圓圓心為,過點且斜率為的直線與圓相交于不同的兩點、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標系中,將曲線上的點按坐標變換得到曲線,以原點為極點、軸的正半軸為極軸,建立極坐標系.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)若直線與曲線交于兩點,與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的定義域為,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)是“似周期函數(shù)”,非零常數(shù)為函數(shù)的“似周期”.現(xiàn)有下面四個關于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”的“似周期”為,那么它是周期為2的周期函數(shù);
②函數(shù)是“似周期函數(shù)”;
③如果函數(shù)是“似周期函數(shù)”,那么“或”.
以上正確結(jié)論的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點.
(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;
(2)設點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com