已知定義在R上的函數(shù)滿足:對(duì)任意x∈R,都有成立,且當(dāng)時(shí),(其中的導(dǎo)數(shù)).設(shè),則a,b,c三者的大小關(guān)系是(   )

A.        B.        C.        D.

 

【答案】

B

【解析】

試題分析:由題意得:對(duì)任意x∈R,都有,即f(x)=f(2-x)成立,

所以函數(shù)的對(duì)稱軸為x=1,所以f(3)=f(-1).

因?yàn)楫?dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0,

所以f′(x)>0,所以函數(shù)f(x)在(-∞,1)上單調(diào)遞增.

因?yàn)?1<0<,所以f(-1)<f(0)<f(),即f(3)<f(0)<f(),所以c<a<b.

故選B.

考點(diǎn):本題主要考查熟練函數(shù)的奇偶性、單調(diào)性、對(duì)稱性等,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。

點(diǎn)評(píng):中檔題,熟練掌握函數(shù)的性質(zhì)如奇偶性、單調(diào)性、周期性、對(duì)稱性等,在給定區(qū)間,導(dǎo)數(shù)值非負(fù),函數(shù)是增函數(shù),導(dǎo)數(shù)值為非正,函數(shù)為減函數(shù)。自左向右看,函數(shù)圖象上升,函數(shù)增;函數(shù)圖象下降,函數(shù)減。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列條件:
①對(duì)任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊(cè)答案