分析:(Ⅰ)設(shè)等比數(shù)列的公比為q,利用a1,a4,a13分別是等比數(shù)列{bn}的b2,b3,b4,求出公差,即可求出數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)求出前n項(xiàng)和,可得數(shù)列通項(xiàng),利用裂項(xiàng)法求數(shù)列的和,即可證得結(jié)論.
解答:(Ⅰ)解:設(shè)等比數(shù)列的公比為q,則
∵a
1,a
4,a
13分別是等比數(shù)列{b
n}的b
2,b
3,b
4.
∴
(a1+3d)2=a1(a1+12d)∵a
1=3,∴d
2-2d=0
∴d=2或d=0(舍去)
∴a
n=3+2(n-1)=2n+1
∵
q===3,
b1==1∴b
n=3
n-1;
(Ⅱ)證明:由(Ⅰ)知
Sn=n2+2n∴
=
=
(
-)
∴
++…+=
[(1-)+(-)+…+(-)]=
(1+--)=
-(+)<
∵
+≤
+=
∴
-(+)≥
∴
≤++…+< 點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng),考查裂項(xiàng)法求數(shù)列的和,考查學(xué)生分析解決問題的能力,確定數(shù)列的通項(xiàng)是關(guān)鍵.